
Design and Implementation of an RDF Triple Store ¤

Ching-Long Yeh and Ruei-Feng Lin
Department of Computer Science and Engineering

Tatung University
40 Chungshan N. Rd., Sec. 3 Taipei, 104 Taiwan

E-mail: chingyeh@cse.ttu.edu.tw

Abstract

In this paper we describe the design and
implementation of an RDF indexing mecha-
nism. An RDF document is parsed into the
corresponding sequence of triples which are
then stored in tables of relational database.
To facilitate the access of RDF content, we
develop a conceptual search program hav-
ing inferencing capability based on the RDF
schema. The parser and the conceptual
search programs are implemented using Pro-
log. We have built a web site to demonstrate
the creation of RDF store and conceptual
search.

1 Introduction

Due to information overloading and explo-
sion, the current browser-based user in-
terfaces, that provide full text search and

¤This research was supported by the Taiwan Na-
tional Science Council under Contract No. 91-2422-
H-036-322.

directory-based browsing, is not e±cient
for information consumption. To solve the
above problem, it is essential to provide
more machine-understandable information
for computer instead of HTML documents,
so that more e®ective applications can be
developed, for example, conceptual search,
intelligent question and answer (to replace
FAQ systems), and automatic generation of
multimedia document. Furthermore using
the semantic information can enhance the
management of web site content. XML can
be used to separate the structure and pre-
sentation of document, which improves the
shortcoming of HTML. However, it is not
su±cient to represent the semantic informa-
tion in XML document. RDF [1], a directed
graph data model encoded in XML syn-
tax, is designed as a language to represent
semantic information. A vocabulary, con-
taining class, subclass, property, subProp-
erty, etc., is added to RDF to become RDF
Schema (RDFS) [2], which is used as the ba-
sis to design ontology languages, for exam-

ple, DAML+OIL [3]. An ontology language
is used to constrain the property labels when
creating RDF ¯les. An annotation tool, for
example, OilEd [4], is used to create the
biographic information of a person by im-
porting a biography schema in RDFS. Due
to lack of indices in RDF ¯les, we are not
able to make full use of the meaning in RDF
documents. In this paper, we attempt to de-
velop an RDF store to facilitate the access
of semantic information in RDF documents.
RDF data model is a directed graph,

where a node is either a resource in the
Web or a literal value of some kind, and
an arc connecting two nodes represents a
predicate (or property) [1]. A pair of nodes
and the arc forms a subject-predicate-object
statement. Thus an RDF document can be
viewed as a collection of triple statements.
The goal of this paper is to design a store
to organize triples obtained from RDF doc-
uments and provide both user and applica-
tion interfaces to access the semantic con-
tent in RDF documents.
We start with building an RDF parser

that takes RDF document as input and pro-
duces the corresponding triple statements.
The parser is implemented using the DCG
in Prolog [5]. We choose relational database
as the persistent store of triples because of
its e±ciency and reliability. We create ¯ve
tables to stores the names space, resources,
literals, predicates and triples in RDF doc-
uments. User can then retrieve the triples
stored in the relational database through
the ODBC interface. However, this ap-
proach is not convenient for user to access
the content in RDF documents. In practice,

we need a higher-level interface that user
can access in conceptual level the content in
RDF documents [6, 7]. We provide a simple
syntax for user to express their conditions,
in which optional attribute value pairs are
appended to the class-name. We have de-
signed a graphical user interface that user
either input query statement directly using
the above syntax or through the class di-
rectory provided by the interface. A user
of the interface is assumed to have com-
mon sense of the referenced domain. For
example, when querying the domain of bib-
liography, user should be aware of the con-
cepts of books, articles, etc., and the asso-
ciated properties, for example, title and au-
thor of book. Having the interested class
(or concept) and the constraints in mind,
user forms a query statement according to
the above syntax. When the interface gets a
query statement, it ¯rst checks syntax and
then, if it is valid, converts the statement
into a number of templates for retrieving
entities in the triple statements. The tem-
plates are Prolog clauses that access through
the ODBC interface the triples stored in the
relational database. On the other hand,
if user just knows little about the domain
in question, she can choose the second ap-
proach. By entering a class (or concept),
the interface responses with a list of prop-
erties associated with the class (or concept)
for user's convenience to choose the required
constraints. After the input is ¯nished, the
interface does the same task of the former
approach.
In Section 2, we describe the background

knowledge related to this research. In Sec-

tion 3, we describe the design of an RDF
triple store. In Sections 4, we describe the
design of a conceptual search program. In
Section 5, we describe the implementation
result. Finally conclusions are made.

2 Related Background

RDF and RDFS
RDF (Resource Description Framework)

is a foundation for processing metadata and
provides the basis of interoperability be-
tween applications that exchange machine-
understandable information. The RDF
speci¯cation consists of a data model and
a syntax in XML. The RDF data model is
a directed graph, where the nodes in the
graph represent either resources in the Web
or literal values and the label of an edge
represents the association between the cor-
responding pairs of nodes. For example, in
Figure 1, the ovals represent resources and
rectangles are literal values.
A edge connecting two nodes represents a

statement or a (subject, predicate, object)
triple. For example, the diagrams in Fig-
ure 1 represent statements as shown in the
following tables,respectively.

Subject: http://www.cse.ttu.edu.tw/chingyeh
Predicate: Creator

Object: Ching-Long Yeh

Subject: http://www.cse.ttu.edu.tw/chingyeh
Predicate: Creator

Object: some id
Subject: some id

Predicate: name
Object: Ching-Long Yeh

Subject: some id
Predicate: email

Object: chingyeh@cse.ttu.edu.tw

RDF provides reference to a collection of
entities in a container of order or unordered

http://www.cse.ttu.edu.tw/chingyeh Ching-Long YehCreator

http://www.cse.ttu.edu.tw/chingyeh

Ching-Long Yeh

Creator

chingyeh@cse.ttu.edu.tw

NameEmail

Ching-Long Yeh is the creator of the resource http://www.cse.ttu.edu.tw/chingyeh

The individual whose name is Ching-Long Yeh, email chingyeh@cse.ttu.edu.tw, is

the creator of the resource http://www.cse.ttu.edu.tw/chingyeh

Figure 1: RDF diagrams with simple and
structured values

list of objects, or an alternative list of ob-
jects. In addition to making statements
about web resources, RDF can be used to
make a statement about a statement.

The RDF data models described above
can be encoded in an XML syntax. For ex-
ample, the ¯rst diagram shown in Figure
~refrdfDataModel can be encoded in XML
as shown below. In the example, we omit
XML declarations and namespaces for con-
venience. The same data model can be en-
coded in di®erent XML forms. See [1] for
the complete formal grammar and more de-
tailed examples.

<rdf:RDF>
<rdf:Description about="http://www.cse.ttu.edu.tw/chingyeh">
<s:Creator>Ching-Long Yeh</s:Creator>

</rdf:Description>
</rdf:RDF>

RDF de¯nes models for describing the re-
lationship among resources and values. The
relationships are represented in terms of

property names. The data model itself pro-
vides no mechanism for describing the prop-
erties. RDF Schema de¯nes a set of vocabu-
laries describing classes of resources and re-
lationships between resources. It provides
a basic type system for use in RD mod-
els. The RDFS type system contains primi-
tive classes like Resource, Class, Property,
ConstraintProperty and Literal and prop-
erties like subClassOf, subPropertyOf, do-
main, and range. Each class is described
by certain properties . As shown below is
a sample RDFS that de¯nes a Person class
along with three properties.
<rdf:RDF>
<rdfs:Class rdf:ID="Person">
<rdfs:comment>The class of people.</rdfs:comment>
<rdfs:subClassOf rdf:resource=

"http://www.w3.org/2000/03/example/classes#Animal" />
</rdfs:Class>

<rdfs:Property rdf:ID="maritalStatus">
<rdfs:range rdf:resource="MaritalStatus" />
<rdfs:domain rdf:resource="#Person" />

</rdfs:Property>
<rdfs:Property rdf:ID="socialSecurityNumber">
<rdfs:range rdf:resource=

"http://www.w3.org/2000/03/example/classes#Integer" />
<rdfs:domain rdf:resource="#Person" />

</rdfs:Property>
<rdfs:Property rdf:ID="age">
<rdfs:range rdf:resource=

"http://www.w3.org/2000/03/example/classes#Integer" />
<rdfs:domain rdf:resource="#Person" />

</rdfs:Property>
</rdf:RDF>

RDF triple stores and query
To make use of RDF content, it is nec-

essary to provide indexing mechanism for
accessing RDF document. W3C has pro-
vided a survey about various RDF triple
data stores [11]. Relational database tech-
nology is the common basis for most of the
data stores. SQL-like languages are pro-
vided to access the triples in data store. In
addition to SQL query, there are other re-
search of RDF query using RDF syntax or
logic-based language [12].
RDF query

3 Building RDF Triple

Store

As described in Section ~refsurvey, an RDF
document is represented in XML. Some in-
dexing mechanism must be provided to fa-
cilitate the access of RDF content. In this
section, we describe the indexing mechanism
that transforms an RDF document into the
corresponding sequence of triple statements
and then stores the triples in a relational
database.

The indexing subsystem can be divided
into two components. First is an RDF pro-
cessor that takes RDF documents as input
and produces the corresponding triple state-
ments. Thus the RDF processor consists of
a analysis and a generation part. In this
paper, we choose De¯nite Clause Grammar
(DCG) of Prolog to implement the analy-
sis part. DCG is a notational extension of
Prolog, that implements context-free gram-
mar. Grammar rules represented in DCG
can be executed directly by Prolog as a syn-
tax analyzer [5]. The left-hand side of a
DCG rule is a single term and the right-
hand side consists of a sequence of terms,
which correspond to both sides of a gram-
mar rule, respectively. Within the RHS, a
comma or semicolon is inserted between two
terms to indicate the logical and and or rela-
tions, respectively. The sequence of terms in
the RHS corresponds to the structure of the
term in the LHS. Semantic actions, that are
Prolog execution calls, can be inserted ap-
propriately in the RHS to perform the gen-
eration tasks. In brief, the resulting RDF
processor is a DCG program. In RDF Spec-
i¯cation there are grammar rules for RDF

……

http://purl.org/metadata/dublin_core#2

http://www.w3.org/2000/01/rdf#1

nsNameId

……

http://purl.org/metadata/dublin_core#2

http://www.w3.org/2000/01/rdf#1

nsNameId

……

Language2

Author1

predicateNameId

……

Language2

Author1

predicateNameId

……

Knowledge Representation2

B.A.Krentsel1

literalNameId

……

Knowledge Representation2

B.A.Krentsel1

literalNameId

…

2

1

predicateId

…

2

1

literalId

……

12

11

resourceIdId

…

2

1

predicateId

…

2

1

literalId

……

12

11

resourceIdId

rdf_Namespace

rdf_Resource

rdf_Predicate

rdf_Literal

……

http://www.foo.com2

Optimization algorithms and consistent approximations1

resourceNameId

……

http://www.foo.com2

Optimization algorithms and consistent approximations1

resourceNameId

Figure 2: Tables for storing triples

in XML [1]. The construction of RDF pro-
cessor is therefore representing each of the
grammar rule in DCG with appropriate se-
mantic actions inserted in the RHS. For ex-
ample, the DCG rule as show below corre-
sponding to Rule [6.2] in RDF Speci¯cation
[1].

obj(Obj) -->

container(Obj);

description(_),{getAllTriples(Obj)}.

The second component takes the resulting
triples as input and stores in ¯ve relational
database tables, summarized in Figure 2.
After stored in relational database, user

can access the content using SQL query or
Prolog statements along with the ODBC
interface. However, this approach is not
convenient for user to access the content
in RDF documents. In practice, we need
some higher-level interface, that is, concep-
tual search as described later in Section
~refConceptual. In summary, the schematic

RDF parser

RDF

document

DB

converter

Triple store

Conceptual

search

programUser

Figure 3: RDF triple store and high-level
interface

diagram of the RDF triple store and the
high-level interface is shown in Figure 3

4 Conceptual Search In-

terface

In the previous section, we have described
how to index RDF documents using rela-
tional database technology. In this section,
we describe the design of a high-level in-
terface to facilitate user accessing the RDF
content.
From user's point of view, an RDF docu-

ment consists of a number of resources each
of which belongs to some class, and the as-
sociated arcs along with the connecting tar-
gets forming the property-value set of the
resources. The higher-level interface there-
fore supports class-based query, where user
specify the class having certain property-
value as the constraints. As mentioned pre-
viously, RDFS is an RDF vocabulary de-
scription language that de¯nes properties of

classes and inheritance of classes and prop-
erties. The facts de¯ned in an RDFS pro-
vide the basis for inference in conceptual
search. To make use of the facts de¯ned in
the RDFS, we ¯rst of all encode the facts us-
ing the representation of an inference mech-
anism. In this paper, we employ Prolog as
the inference mechanism of the conceptual
search interface. Therefore we de¯ne the fol-
lowing Prolog statements to represent the
facts in an RDFS.

² class(ClassName). This statement is
to de¯ne the classes occurring in an
RDFS, where ClassName is the name
of a class.

² property(PropertyName, [Domain,

Range]). There are two arguments of
a property declaration. The ¯rst is the
property name and the second is a list
that contains the identi¯ers of domain
and range of that property.

² subClassOf(ParentClassName,

SubclassName). This declaration
de¯nes the relationship of parent and
child classes.

² subPropertyOf(ParentPropertyName,

SubpropertyName, [Domain,

Range]). This is similar to property
except that the parent property name
is inserted as the ¯rst argument.

Having de¯ned the class schema in Pro-
log, we then describe the conceptual search
program. The conceptual search program
provides a simple syntax for user to ex-
press query command. In general, a query

command is composed three parts: the tar-
get class name, the constraint of the ob-
jects of the class, the required properties of
the matched objects. The constraint part
is a list of attribute-value pairs. The re-
quired properties is a list of property names
specifying the resulting information of the
matched objects. Before developing the in-
ference rules for conceptual search, ¯rst of
all we need to sort out the problem of the
lexical mismatch between words having the
same meaning. User may not know the iden-
ti¯ers of classes and properties occurring in
the schema of ontology. The problem of
lexical unmatch may happen between user's
query command and the identi¯ers in the
schema, which may lower the rate of success-
fully getting result. Thus employing a dic-
tionary having semantic information with
each lexical entry seems desirable to sort out
the problem. However it is out of the scope
of this research to build up such a dictio-
nary. We employ a thesaurus dictionary for
the moment to deal with the problem of lex-
ical unmatch.
The conceptual search program as out-

lined below consists of a number of inference
based on the class hierarchy in schema.
Input: A target class name, C; a list of

attribute-value pairs as the constraints,

[a1 : v1; :::; an : vn]; and a list of attributes as

the resulting ¯elds, [f1; f2; :::; fm].

Output: A list of matched objects with the

requested properties

Step 1: For the class name C and each of the

attribute names, ai, i = 1; :::; n, resolve the

lexical unmatches by consulting the thesaurus

dictionary. Let the results be C 0 and a0i,

i = 1; :::; n.

Step 2: Find all objects belonging to class C 0,
resulting a list of Obj =[o1; :::; ol].

Step 3: For each object oi in Obj, check if it

satis¯es each of the a0j : vj in the constraint
list. If it satis¯es, then output oi with the

values of the requested properties.

Step 4: Find the subclasses of C 0. For each
subclass repeat Steps 2 and 3.

Step 5: Find the sibling classes of C 0. For

each sibling class repeat Steps 2 and 3.

5 Implementation

We have implemented all the components
shown in Figure 3 using Sictus Prolog [8]
and Microsoft SQL 2000 on MS Windows
2000. The interface between Prolog and
browser is implemented using JSP technol-
ogy. We choose a bibliography ontology
from the DAML ontology library [9] as the
schema and create RDF documents using
Ontoedit [10], an ontology editor. User can
send an RDF document to the parser to see
the resulting triples in Prolog and further
view the results stored in SQL database,
as shown in Figure 4. In the conceptual
search interface, user can either submit a
query command, as shown in Figure 5 using
the syntax described previously or using the
schema provided by the interface, as shown
in Figure 6.

Figure 4: Result of parsing RDF document

Figure 5: Conceptual search using com-
mand

Figure 6: Conceptual search using schema

6 Conclusions

In this paper we describe the design and im-
plementation of RDF triple store. We have
¯nished the components to build a RDF
triple store and a conceptual search pro-
gram. The programs have been tested us-
ing a bibliography domain. The result of
experiment is promising. In the future we
will further improve the inference capabil-
ity of the conceptual search and tested the
programs with other domains. Prolog pro-
vides a good mechanism for inference. We
will further add frame-based capability to
Prolog to enhance the inference. This re-
search focuses on the development of RDF
indexing mechanism. We will develop other
applications, such as semantic navigation,
personalization, etc.

References

[1] W3C, Resource Description Frame-
work (RDF) Model and Syntax
Speci¯cation, W3C Recommenda-
tion 22 February 1999. Available at
http://www.w3.org/TR/1999/REC-rdf-
syntax-19990222/

[2] W3C, RDF Vocabulary Description Lan-
guage 1.0: RDF Schema W3C Work-
ing Draft 30 April 2002. Available at
http://www.w3.org/TR/rdf-schema/

[3] DAML+OIL, Available at
http://www.daml.org/2001/03/daml+oil

[4] http://oiled.man.ac.uk/

[5] Ivan Bratko, Prolog Programming for Ar-
ti¯cial Intelligence, 3rd ed., Addison-
Wesley, 2001.

[6] G. Denker, et al., Accessing infor-
mation and services on the DAML-
enabled Web, Proceedings of Sec-
ond Int'l Workshop Semantic Web
(SemWeb'2001), 2001. Available at
http://citeseer.nj.nec.com/denker01accessing.html

[7] M. Klein and A. Bernstein, Searching for
services on the semantic web using pro-
cess ontologies, Proceedings of Interna-
tional Semantic Web Working Symposium
(SWWS), 2001.

[8] http://www.sics.se/sicstus/

[9] DAML Ontology Library, Available at
http://www.daml.org/ontologies/

[10] Ontoedit, Available at
http://www.ontoprise.de/com/start downlo.htm

[11] W3C, Survey of RDF/Triple Data
Stores, http://www.w3.org/2001/05/rdf-
ds/DataStore

[12] G. Karvounarakis, RDF query
languages: a state-of-the-art,
http://139.91.183.30:9090/RDF/publications/state.h

