音樂搜尋與分析

陳良弼

國立政治大學

第五㖤數位典藏技術研討會

August 31， 2006

Outline

- Music Retrieval
\square Architecture for music retrieval
\square Music representations
\square Query processing
\square Indexing
\square System Evaluation
- Music Analysis
\square Repeating pattern discovery
\square Phrase extraction
\square Music classification
\square Music recommendation
- Future Research Directions

Architecture for Music Retrieval

Styles of Music Composition

- Monophony
\square Monophonic music has at most one note playing at any given time; before a new note starts the previous note must have ended
- Polyphony
\square Polyphonic music has no such restrictions. Any note or set of notes may begin before any previous note or set of notes has ended

Monophony Representations

- Absolute measure
\square Absolute pitch

- C5 C5 D5 A5 G5 G5 G5 F5 G5
\square Absolute duration
- 111110.50 .511
\square Absolute pitch and duration
- (C5,1)(C5,1)(D5,1)(A5,1)(G5,1)(G5,0.5)(G5,0.5)(F5,1)(G5,1)
- Relative measure
\square Contour (in semitones)
- $0+2+7-200-2+2$
$\square \mathrm{IOI}$ (Inter onset interval) ratio
- 11110.5121
\square Contour and IOI ratio
- $(0,1)(+2,1)(+7,1)(-2,1)(0,0.5)(0,1)(-2,2)(+2,1)$

Polyphony Representations

- All information preservation
\square Keep all information of absolute pitch and duration (start_time, pitch, duration)
- (1,C5,1)(2,C5,1)(3,D5,1)(3,A5,1)(4,F5,4)(5,C6,1)(6,G5,0.5)(6.5,G 5,0.5)...
- Relative note representation
\square Record difference of start times and contour (ignore duration)
- $(1,0)(1,+2)(0,+7)(1,-4) \ldots$
- Monophonic reduction
\square Select one note at every time step (main melody selection)
- (C5,1)(C5,1)(A5,1)(F5,1)(C6,1)...

Music Representation - Theme

- Theme
\square A short tune that is repeated or developed in a piece of music
- A small part of a musical work
\square Efficient retrieval
- A highly semantic representation
\square Effective retrieval
- Automatic theme extraction
\square Exact repeating patterns
\square Approximate repeating patterns

Query Processing

- String Matching Algorithms
\square Exact string matching
- Brute-force method
- KMP algorithm
- Boyer-Moore algorithm
- Shift-Or algorithm
\square Partial string matching
- Shift-Or algorithm
\square Approximate string matching
- Edit distance
- Dynamic programming
- Candidate pruning [Liu, Wu, Chen, ACM MSJ]

Indexing

- Tree-based index (Suffix tree)
- List-based index (1D-list)

■ N-gram index

Tree-Based Index

- [Chen, et al., ICME‘00]
- Music objects are coded as strings of music segments
\square Four segment types to model music contour
\square Pitch and duration are considered
- Index structures
\square Augmented suffix tree
- Both incipit/partial and exact/approximate matching can be handled

Tree-Based Index (Cont.)

Four segment types

type A
type B
type C
type D

Tree-Based Index (Cont.)

(a)
root

(b)
(a) An example suffix tree
(b) A 1-D augmented suffix tree

The suffix tree of the string $S=$ "ABCAB"

List-Based Index

- [Liu, Hsu and Chen, ICMCS‘99]
- Music objects are coded as melody strings
\square "so-mi-mi-fa-re-re-do-re-mi-fa-so-so-so"
- Melody strings are organized as linked lists
- Both incipit/partial and exact/approximate matching can be handled
\square Exact link, insertion link, dropout link, transposition link

List-Based Index (Cont.)

N-Gram Index

- [Doraisamy and Ruger, ISMIR'02]
- A widely used technique in music databases
- Target strings are cut into index terms by a sliding window with length N
- Index can be implemented by various methods, e.g., inverted file
- Queries are also cut into index terms with length N
- Searching and joining are then performed

N-Gram Index (Cont.)

$\mathrm{S}=a \mathrm{abb} c a a b$

2-Gram	Position
aa	1,6
ab	2,7
bb	3
bc	4
ca	5

Inverted file

Query=bbca

Cut into 2-grams

Position: $3 \quad$ Position: 5

The substring is found from position 3 to position 6

System Evaluation

■ Traditional measures of effectiveness are precision and recall

$$
\text { precision }=\frac{\text { number of retrieved references that are relevant }}{\text { number of references that are retrieved }}
$$

recall $=\frac{\text { number of retrieved references that are relevant }}{\text { number of relevant references }}$

A Platform for Evaluating MIR Systems

- Evaluation of various music retrieval approaches
\square Efficiency
\square Effectiveness
- The Ultima project builds such a platform [Hsu, Chen and Chen, CIKM'01]
\square Same data set and query set for various approaches
\square Compare recall-precision curves

Repeating Pattern Discovery

- A repeating pattern in music data is defined as a sequence of notes which appears more than once in a music object
- The themes or motives are typical kinds of repeating patterns
- Exact repeating patterns [Hsu, Liu and Chen, TMM'01]
\square By the string-join operator
- Approximate repeating patterns [Liu, Wu and Chen, Dasfaa'05]

- Each vertex represents a music segment and the number on each link indicates the similarity degree between the two segments
- The center is called a pivot; if the similarity degree to the pivot is larger than the predefined threshold, the associated segment is then called an extension of the pivot
- A pivot is an ARP if the number of extensions reaches the support threshold

Phrase Extraction

- Two features used for phrase extraction
\square Duration and rest
- Melodic Shapes [Huron, Computing in Musicology'95]
\square Statistics Information in Western Folksongs
- The most common length of a phrase is 8 notes
- Half of all phrases are between 7 and 9 notes in length
- Three-quarters of all phrases are between 6 and 10 notes in length

Phrase Extraction (Cont.)

A: the pitch value of the first note in the target phrase
B : the pitch value of the last note in the target phrase
C: the average pitch value of the remaining notes in the target phrase

Contour Type	Number of Phrases	Percentage	Arch Shape	Definition
Convex	13926	38.6%		$\mathrm{~A}<\mathrm{C} \wedge \mathrm{B}<\mathrm{C}$
Descending	10376	28.8%		$\mathrm{~A}>\mathrm{C}>\mathrm{B}$
Ascending	6983	19.4%		$\mathrm{~A}<\mathrm{C}<\mathrm{B}$
Concave	3496	9.7%		$\mathrm{~A}>\mathrm{C} \wedge \mathrm{B}>\mathrm{C}$
Others	1294	3.5%		

Phrase Extraction (Cont.)

- Identify the positions of all the terminative notes
- Extract the music pieces according to the terminative notes
- Select the candidate music pieces for decomposition based on the length information
\square If the length ≤ 12, the music piece is marked as a phrase
\square If the length > 12, decompose the music piece into phrases
■ convex > descending > ascending > concave

Phrase Extraction (Cont.)

646260575567676967696462
$6462605755|67676967696462| 64626057556764646260626462626767$

Order	The Length of the Prefix Fragment	The Pitch of the First Note	The Pitches of the Remaining Notes	The Pitch of the Last Note
Convex?		4	62, 60, 57, 55	67
No		4	62, 60, 57, 55, 67	67
		4	62, 60, 57, 55, 67, 67	69
Descending?		4	62, 60, 57, 55, 67, 67, 69	67
		7^{4}	62, 60, 57, 55, 67, 67, 69, 67	69
Length $=12, \mathrm{~A}=$	4, $\mathrm{B}=62, \mathrm{C}$	63.74	62, 60, 57, 55, 67, 67, 69, 67, 69	64
	12	64	62, 60, 57, 55, 67, 67, 69, 67, 69, 64	62

Music Classification

- Different kinds of music units can be extracted from music objects, such as repeating patterns and phrases
- Different kinds of music units may have different semantics in musicology
- These extracted music units can be used in music classification, retrieval, and analysis

Music Recommendation Systems

- [Chen and Chen, CIKM'01]
- The results of music classification can be used for music-related services
- By analyzing the user access histories, we can discover which music classes the users may be interested in and which users belong to the same group
- By using different kinds of recommendation mechanisms, we can recommend the users suitable music objects

Architecture

Recommendation Mechanisms

- Content-based filtering approach
\square Similarity between music objects and user profiles
\square Recommend the music objects that belong to the music groups the user is recently interested in
- Collaborative filtering approach
\square Similarity between user profiles
\square Provide collaborative recommendations to the users in the same user group
- Statistical approach
\square Recommend "hot" music objects

Future Research Directions

- Similarity measures, index structures and segmentation for polyphonic music
- Cross-media retrieval
- Music retrieval based on user's emotion/situation
\square Music mood analysis
\square music therapy
\square Creating a High Quality Learning, Relaxing and Sleeping Environment through Affective and Attentive Computing

