

Department of Biosystems Engineering LAB of Multi-Spectral & Image Processing

三種主軸成分法於 數位影像特徵擷取與判別之研究

Study on the Three PCA Methods for Feature Extraction and Classification of Digital Image

羅竣威 謝清祿

國立屏東科技大學中華民國94年9月2日

主軸成分法(Principal Component Analysis, PCA)常被 應用於分光影像之處理上,主要是可將資料維度縮減及 特徵抽取,因多分光影像擁有更多資訊,故利用PCA對 於光譜的選擇將有很大的效益,也可同時達到短時檢測 之目的。

- 1. 應用多分光影像攝影系統,進行MS培養基影像擷取試驗。
- 2. 使用不同PCA策略理論分別針對各分光影像進行特徵值(Fe ature)抽取,並減少不必要的分光影像資訊。
- 利用貝氏分類器(Bayes classifiers)對不同PCA策略之特徵值 進行培養基污染判別。

2

前言

■ 主軸成分法

主軸成分法是一種資料轉換方法,在影像處理 中稱作主軸轉換法(Principal Component Transform ation, PCT)。其基本概念係將原始變數轉換成一 組線性獨立的變數向量,其稱為主軸向量(Princip al Components, PC),本研究PCA理論分成三種, 即單一波段多樣本(策略A)、單一樣本多波段(策 略B)、多波段多樣本(策略C)。

■ 單一波段多樣本(策略A)

LAB of Multi-Spectral & Image Processing

M個樣本影像排列成行向量 $\Gamma(N^2 \times 1)$ 形式:

• M個 Г 向量的平均向量Ψ:

$$\Psi = \frac{1}{M} \sum_{i}^{M} \Gamma_{i}$$
• M個 Γ 向量的Φ_i 差值向量:

$$\Phi_{i} = \Gamma_{i} - \Psi \quad (i = 1, ..., M)$$
• 共變異矩陣(Covariance matrix, C): ▲ 维度大小N²×N²

$$C = \frac{1}{M} \sum_{n=1}^{M} \Phi_{n} \Phi_{n}^{T} = AA^{T}, \quad A = [\Phi_{1}, \Phi_{2}, ..., \Phi_{M}]$$
· 特徵向量x_i(Eigenvectors)

Department of Biosystems Engineering LAB of Multi-Spectral & Image Processing

BEIØ

• L矩陣維度大小為M×M (Turk & Pentland, 1991):

• 特徵空間(Eigenspace, U) 維度大小為M×N²:

9

Department of Biosystems Engineering LAB of Multi-Spectral & Image Processing

今設有兩類待辨識的樣本,分別為群1及群2,此以 代號 G_1 及 G_2 表示,其中 Γ_1 及 Γ_2 向量映射至特徵空間: $\Omega_2 = U^T (\Gamma_2 - \Psi)$ $\Omega_1 = U^T (\Gamma_1 - \Psi)$ 式中 Ω_1 及 Ω_2 分別為 G_1 及 G_2 類別的特徵參數。 待測影像 Γ_t映射至特徵空間U: $\Omega_{t} = U^{T} \big(\Gamma_{t} - \Psi \big)$ 縮減 N×N階Γ'原始影像 Ⅲ M'x1 階Ω向量Department of Biosystems Engineering 三種主軸成分法於數位影像特徵擷取與判別之研究 10

AB of Multi-Spectral & Image Processing

■ 多波段單一樣本(策略B)

將某個樣本B個波段長乘寬(N×N) pixels的 Γ '分光影像, 將之排成X(N²×1)向量形式(林, 2002; Gonzalez & Wood, 2002):

式中 X_i 映射至特徵向量 $E(\lambda_1 \ge \lambda_2 \dots \ge \lambda_B)$ 中,即百獲得光譜空間的主成分影像(PC image)。

12

■ 多波段多樣本(策略C) (Quintiliano & Santa-Rosa, 2003) Original Image Band 1 Band 2 行向量排列: Band B $\Gamma_{i,1} = \Gamma'_{j,k,p}$ Γ'_{i} Γ'_i Γ_i' $(i = 1, ..., BN^2; j, k = 1, ..., N; p = 1, ..., B)$ Ν Ν Sample M Sample 2 Sample 1 $N \times N \times B$ 階 Γ' 分 光 影 像 $N^2 \times 1$ -Column vectors Band 1 Band 2 Γ_i 縮減 Band B Sample 1 Sample 2 Sample M M'x1階 Ω 向量 圖6多波段多樣本向量串接排列示意圖

13

Department of Biosystems Engineering LAB of Multi-Spectral & Image Processing

■ 貝氏分類器

該理論係藉由母體的事前機率(Piror Probability)及已知 類別之原始資訊去推得事後機率(Posterior Probability),事 後機率即為用以歸類的鑑別機率。

決策函數d_i(x):

$$d_j(x) = p(x/\omega_j)P(\omega_j) \qquad j = 1, 2$$

三種主軸成分法於數位影像特徵擷取與判別之研究

 $p(x/\omega_j)$ 表示未知類群X屬於 ω_j 類別的機率 $P(\omega_j)$ 表示 ω_j 類別發生的機率

今設兩類別呈高斯模式分佈,G1群及G,群於母體 的發生機率為相同, $P(\omega_1) = P(\omega_2) = 0.5$: $d_{j}(x) = \frac{1}{(2\pi)^{n/2} |C_{j}|^{1/2}} \exp \left[-\frac{1}{2} (x - m_{j})^{T} C_{j}^{-1} (x - m_{j})\right] \qquad j = 1, 2$ 樣本共變異矩陣: 樣本平均值: $C_{j} = \sum_{i=1}^{N_{j}} (x_{1i} - m_{j})(x_{1i} - m_{j})'$ $m_{j} = \frac{1}{N_{j}} \sum_{i=1}^{N_{j}} x_{1i}$ 上式中n表示類別向量的維度,N_i則為訓練樣本數目 指數形式轉為自然對數形式: $d_{j}(x) = -\frac{1}{2}(x - m_{j})^{T}C_{j}^{-1}(x - m_{j}) - \frac{1}{2}\log|C_{j}|$ j = 1, 2若待測樣本x的決策函數為 $d_2(x) < d_1(x)$,則x屬於群1;

15

反之 $d_2(x) > d_1(x)$,則x屬於群2。

Department of Biosystems Engineering LAB of Multi-Spectral & Image Processing

實驗方法與設 ■ 多分光影像摘取	備系統	
	CCD 規格	 紫外線: Japan, SONY, XC-EU50, 300~420nm 可見光: Japan, SONY, XC-ES50, 400~770nm 紅外線(1): Japan, SONY, XC-EI50, 400~870nm 紅外線(2): Japan, Sakai, KC-1700E, 850~1050nm
	濾鏡	■長波通濾鏡:LP400~700每隔20nm及850 nm共16種 ■短波通濾鏡:SP400 ~700每隔20nm一種,共15種
	光源	 紫外光源: USA, UVP, UVGL-58,366nm波段 可見光源(短弧氙燈): Taiwan, Rocoes, 300~800nm 紅外LED光源(1): Japan, Saikai, 850nm及880nm 紅外線光源(2): Taiwan, CAMTEK, 120W,840nm
	鏡頭	■Japan, Sakai, LMV413H, 焦距4.8 mm, 光圈F1.3
圖8 多分光影像擷取系統實體圖	其它	■影像擷取卡:IMAQ PCI-1411 (NI)
Department of Biosystems Engineerin	ig ing	16 三種主軸成分法於數位影像特徵擷取與判別之研究

BEIØ

■ 不同波段之有汙染MS培養基影像

■策略A判別率

樣本數300

校正150 測試150

波段 日期	300-400 nm (%)	850-870 nm (%)	400-700 nm (%)	480-560 nm (%)	560-620 nm (%)	400-770 nm (%)	850-1050 nm (%)	平均值 (±標準差)
第2日	64	60	64	64	70	61	59	63.1(±3.7)
第3日	58	64	58	63	56	62	54	59.3(±3.8)
第4日	78	86	74	75	74	76	70	76.1(±5.0)
第5日	86	86	88	87	88	88	82	86.4(±2.1)
第6日	88	88	89	89	88	86	90	88.3(±1.3)
第7日	88	90	88	90	89	88	90	89.0 (±1.0)
平均值	77.0	79.0	76.8	78.0	77.5	76.8	74.2	
(±標準差)	(±13.1)	(±13.3)	(±13.6)	(± 12.5)	(±13.3)	(± 12.7)	(±15.6)	X

Department of Biosystems Engineering LAB of Multi-Spectral & Image Processing

23

貝氏分类	頁器
日期	判別正確率 (%)
第2日	50
第3日	74
第4日	71
第5日	79
第6日	88
第7日	82
平均值	74.0

波段 日期	B1 (%)	B2 (%)	B3 (%)	B4 (%)	B5 (%)	B6 (%)	B7 (%)	平均值 (±標準差)
第2日	68	63	63	62	60	62	64	63.1(±2.5)
第3日	61	65	64	68	58	70	62	64.0(±4.1)
第4日	87	91	88	88	86	86	88	87.7(±1.7)
第5日	89	92	88	87	86	91	91	89.1(±2.3)
第6日	89	88	88	90	90	90	89	89.1(±0.9)
第7日	90	91	89	91	90	88	89	89.7 (±1.1)
平均值 (±標準差)	80.7 (±12.8)	81.7 (±13.8)	80.0 (±12.8)	81.0 (±12.6)	78.3 (±15.1)	81.2 (±12.1)	80.5 (±13.6)	

B1: 560~620nm+850~870 nm; B2: 480~560 nm+850~870 nm

B3: 400~770 nm+850~870 nm; B4: 300~400 nm+850~870 nm

B5: 850~1050 nm+850~870 nm; B6: 300~400 nm + 400~770 nm + 850 nm~870 nm

B7: 480~560 nm + 560~620 nm + 850 nm~870 nm

■策略C不同特徵數判別

圖12 不同特徵數與判別正確率關係圖(第4天影像)

26

Department of Biosystems Engineering LAB of Multi-Spectral & Image Processing

結論

主軸成分法配合判別分析的貝氏分類器進行影像特徵歸類, PCA的特徵抽取方法,可將複雜的影像辨識問題簡化, 無須繁複的特徵抽取運算,即能有最佳的影像資訊表 現,而PCA所提供的資料維度縮減方式,可針對分光 影像降低龐大的特徵資訊,且不流失原始影像的重要 資訊,試驗結果顯示,在不同PCA的抽取策略,利用 多波段多樣本的PCA法則,對於這些擁有多種光譜特 性的數位影像於特徵抽取上,較單一樣本多波段、單 一波段多樣本的抽取策略,有較佳的效果。

建議

本方法亦能用在多維度的影像空間,例如應用在彩色數位 影像的辨識上,彩色影像為R、G、B所產生的三維空間 資訊,同樣能以PCA方法將此三維空間進行特徵的抽取 及壓縮,對於彩色影像的圖案辨識,亦可提升辨識上的 效率。本研究建議,此方法甚值得於資訊量龐大的數位 典藏系統中,數位影像資訊儲存、檢索、及辨識等的研 究應用。

