
Language Identification of
Character Images Using

Machine Learning Techniques
Ying-Ho Liu

Institute of Information Science,
Academia Sinica, Taipei, Taiwan

Nankang 115 Taipei, Taiwan, ROC.

 daxliu@iis.sinica.edu.tw

Chin-Chin Lin
Institute of Information Science,
Academia Sinica, Taipei, Taiwan

Nankang 115 Taipei, Taiwan, ROC.

erikson@iis.sinica.edu.tw

Fu Chang
Institute of Information Science,
Academia Sinica, Taipei, Taiwan

Nankang 115 Taipei, Taiwan, ROC.

fchang@iis.sinica.edu.tw

ABSTRACT

In this paper, we propose a new approach for identifying the
language type of character images. We do this by
classifying individual character images to determine the
language boundaries in multilingual documents. Two
effective methods are considered for this purpose: the
prototype classification method and support vector
machines (SVM). Due to the large size of our training
dataset, we further propose a technique to speed up the
training process for both methods. Applying the two
methods to classifying characters into Chinese, English, and
Japanese (including Hiragana and Katakana) has produced
very accurate and comparable test results.

Keywords
language identification, prototype classification
method, support vector machines (SVM)

1. INTRODUCTION
Identifying the language type of textual entities is an
important research problem for document image analysis,
because of the need to pre-classify documents or individual
characters before nominating a proper subsequent module
(layout analyzer, character recognizer, etc.) to work on them.
The method we propose in this paper classifies a character
image as Chinese, English, or Japanese. Documents
comprised of these three character types are easy to find in
real life (see Figure 1). Our method, however, is not limited
to this application and is potentially useful for classifying
characters in different combinations of languages. Our
method is in fact almost identical to that used for character
recognition. The only difference lies in the class types
involved in the applications. At first, it may appear that
employing a character-recognition method to identify
language types runs the risk of generating too large an
overhead. However, by using an effective machine-learning
method, we are able to train a classifier to draw the
demarcation along boundaries between language types,
rather than character types.

2. BACKGROUND
A variety of methods have been proposed for this purpose.
They can be classified into the following three categories.

(1) The first category identifies coarse textual entities,
such as textlines, text blocks, or complete
documents, into different languages, assuming that
the characters in the coarse entities belong to the
same language (in other words, the textual entities
are homogeneous) and have been recognized by an
OCR technique.

(2) The second category identifies the language type of
homogeneous coarse entities, without first
recognizing the characters in them.

The third category identifies the language type of individual
characters, without analyzing the coarse entities to which
they belong.

Methods in the first category are particularly appropriate for
European languages, which have many characters in
common. Nobile et al. [1] decompose European characters
into 10 classes (A, x, I, g, j, U, D, Q, E, Z) and denote them
as character shapes. Word shapes are then formed as
sequences of these character shapes. For example, the string
“Can’t get there from here” is coded as “AxxQA gxA
AAxxx Axxx Axxx”. For each of the candidate European
languages, one picks the top 50 most frequent word shapes,
the top 5 most frequent word shapes that are unique to the
language, the top 100 most frequent pairs of word shapes,
and the top 100 most frequent triples of word shapes. The
word shapes of a test textual entity are then compared with
these four properties of each language to determine which
language they belong to. Pham et al. [2] take a
vector-quantization approach to language identification.
Words of each candidate language are transferred to a
vector of fixed size on the basis of the characters’ ASCII
value. The codebook of each language, consisting of a fixed
number of vectors, is then created with the help of a
clustering algorithm. The same technique is applied to each
test textual entity to create its own codebook. The language

of a textual entity is then identified as the one whose
codebook is most similar to the textual entity’s codebook.
Nakayama and Spitz [3] define 12 shape classes of
European characters. They then use the shapes of English,
French and German as training data and apply LDA
technique to perform classification.

Methods in the second category perform classification
without first recognizing character images. Wood et al. [4]

propose an approach for classifying coarse textual entities
into European languages, Russian, Arabic, Chinese, and
Korean text. They first use horizontal and vertical filters to
eliminate strokes shorter than 5 pixels or longer than 20
pixels, after which they form document profiles by
projecting filtered images on to the horizontal and vertical
axes. These profiles reflect the characteristics of the
underlying language and can therefore be used for
classification.

Figure 1. A document page comprised of English, Kanji (Chinese), and Japanese characters.

Spitz [5] performs document language identification in
two stages. In the first stage, a coarse textual entity is
classified into a Han-based script (Chinese, Japanese, and
Korean) or a Latin-based script, according to the upward
concavity property of each character. In the second stage,
character density is calculated for each textline to
differentiate among the three languages in Han-based
documents. For Latin-based documents, word shapes
similar to those in [1] are used for further classification. In
a different approach, Hochberg et al. [6] extract connected
components from document images. They then compute
five features for each component, namely, the relative
vertical centroid, the relative horizontal centroid, the
number of white holes, the number of black pixels in a
unit area, and the component’s aspect ratio. Finally, they
compute the mean, standard deviation, and skew of these
five features for all components, resulting in a
15-dimensional vector for one textual entity. The fisher
linear discriminant is then computed for these vectors and
used to identify the language.

Methods in the third category treat individual characters
as independent entities. Thus far, Sanguansat et al. [7] is
the only work we have found in this category. They
propose a method to distinguish Thai from English
characters. Characters are first classified into those with a
looped part and those without. In the former type, the
looped part occupies a smaller portion in Thai characters
than in English characters. In the latter type, cavities and
vertical-to-horizontal-gradients are used for classification.
However, there are certain Thai and English characters
that are rather difficult to discern by either method. In
such cases, context information can be used for
disambiguation.

Of the above methods, the first category serves as a
post-process for OCR, while the other two serve as a
pre-process. Also, the first two categories assume the
homogeneity of textual entities, while the third category
makes no such an assumption. For this reason, the third
category is the most useful for dealing with documents in

which there are no clues in the layout that can be used to
determine language boundaries. This is the case with most
multilingual documents. Thus, the problem faced in this
category is probably the most difficult to deal with,
since – unlike the other two categories – character images
are treated as independent entities, rather than joint
entities.

We experiment with two machine-learning methods for
this purpose: support vector machines (SVM) (Vapnik [9])
and a prototype classification method (Chang et al.
[10-11]). Both techniques have proved useful for character
recognition applications, especially for the recognition of
handwritten digits and Chinese/Japanese characters. When
applied to the current problem, both methods achieve high
and comparable accuracy rates. This fact qualifies them as
language classifiers. The SVM, however, requires longer
training and testing times than the other method for the
current application, which is characterized by a large
training dataset and high imbalance among data of
different class types. We thus recommend the prototype
classification method for this particular application.

The remainder of this paper is organized as follows. In
Section 2, we describe the improved prototype learning
method. Section 3 details the necessary computations for
obtaining the best SVM solutions. In Section 4, we
present a special technique for speeding up the two
methods. Section 5 contains the experiment results.
Finally, in Section 6, we present our conclusions and the
direction of future work.

3. THE PROTOTYPE CLASSIFICATION
METHOD

The prototype classification method we employ in this
paper is a modification of the method described in [11]. In
the training phase, a learning algorithm is used to
construct prototypes from training samples. The general
framework of the learning process consists of two loops.
The outer loop decides whether the current set of
prototypes is sufficient for classifying all training samples
properly. If this is the case, the process terminates.
Otherwise, the outer loop decides which class types need
to have more prototypes constructed, and transfers the
problem to the inner loop. The inner loop behaves like a
traditional clustering technique. It computes the location
of cluster centers for the number of prototypes specified
by the outer loop and these centers are taken as our
prototypes.

Of the clustering techniques available, we adopt the fuzzy
c-means (FCM) method (Bezdek [12]). As indicated in
[11], this algorithm yields slightly higher accuracy rates
than the K-means (KM) clustering algorithm. There is,
however, a problem associated with incorporating FCM
into the prototype construction process. It is possible that
the process may not terminate within a finite number of

iterations. As a remedy for this potential problem, [11]
suggests that a sample S should be abandoned if recruiting
S as a seed to generate new prototypes does not reduce the
number of unabsorbed samples. A sample is absorbed if it
matches in class type with the nearest prototype.

In our application, we have observed that this remedy may
cause another problem due to the high imbalance of data.
The data-imbalance issue refers to the situation where
training samples in some class types outnumber those in
other class types. In our application, the number of
Chinese samples is 9.3 times the number of English
samples, while the number of Japanese samples is 5.3
times the number of English samples. These samples
clearly constitute an unbalanced dataset. Thus, in the early
stage of prototype construction, prototypes of populous
class types may locate further away from class boundaries
than those of under-populated class types, and the number
of unabsorbed samples may increase transiently with the
number of prototypes. At this point, one should allow the
creation of more prototypes, instead of abandoning them.
Based on this intuitive idea, we modify the prototype
construction process as follows. For convenience, we refer
to samples of class type C as C-samples, and prototypes of
class type C as C-prototypes. Also, the range of a
C-prototype P is the set of all C-samples that find P as the
nearest C-prototype.

Step 1. Initiate a prototype for each class type.

Step 2. Perform the absorption test. If no more samples
are unabsorbed, terminate the process.

Step 3. Select a C-sample from the unabsorbed C-samples
for each class type C.

Step 4. Use FCM to determine n+1 C-prototypes, using
the newly selected C-sample and existing n
C-prototypes as seeds. Check if all the n+1
C-prototypes have a non-empty range. If some of them
are empty, set the newly selected C-sample as futile
and return to Step 3; otherwise, return to Step 2. (Note
that a futile sample is no longer taken as an
unabsorbed sample.)

The non-emptiness of all prototype ranges guarantees the
termination of the process within a finite number of
iterations, since – in the worst case – all prototype ranges
will shrink to a single-member set, ensuring that all
samples (except those that are declared futile) are
absorbed. Following [11], we call the above process a
fuzzy construction process (FCP).

4. SUPPORT VECTOR MACHINES
SVM is a powerful tool for binary classification. SVM is

an attractive technique because, in addition to the
optimality of its solutions, it allows users to choose from a
variety of options. The many choices, however, require
great caution and perseverance on the user’s part, since
the experimental work can be tedious and may require
special techniques to reduce the otherwise excessive
amount of computing time. In this section, we list all the
relevant options for our application. Then, in the next
section, we describe a technique of our own to speedup
the training process.

The first option is the type of decomposition we have to
make in order to solve our problem, which is to classify an
object into three class types. In order to apply it to a
multi-classification problem, we have two choices: the
one-against-one approach and one-against-others
approach (Hsu and Lin [13]).

The second option is the kernel function, which specifies a
measure for the similarity between two vectors. The third
option is the value of the parameters associated with the
kernel functions.

The fourth option is the parameter C, which specifies the
level of tolerance for miss-classification. The purpose of
this parameter is to control possible over-fitting in the
training process.

To determine the best values for all these choices, we have
to go through a cross-validation process, in which we
randomly divide the training samples into K equal-sized
parts, called K folds. We then train an SVM model using
K-1 folds as training samples and the remaining fold as
test samples. We run this process K times, each time using
a different fold as the test data. We then take the average
of the test accuracy rates of all K runs. This test enables us
to determine the average SVM accuracy rate for one
combination of options.

5. SPEED-UP WITH THE GENERATION
OF A REDUCED DATASET

The size of the training samples for our application is too large.
Thus, a speedup technique must be used to curtail the
lengthy computation time.

The idea is to initiate a reduced dataset R using some data
reduction technique. We then apply FCP to this dataset to
determine both the number and the location of prototypes.
When FCP process is finished, we pass the prototypes
through a validation test to check if all training samples
have been absorbed, except, of course, those that have
been declared futile. The FCP automatically meets the
validation test, if it works on the complete set of training
samples. However, since it works only on the reduced
dataset, some training samples outside the dataset may be
found to be unabsorbed. If this is the case, we add the
unabsorbed samples to R and proceed with a new run of
FCP on the augmented R. This time, the FCP starts with

the prototypes constructed in the previous run as the initial
prototypes. The resultant prototypes are then passed
through a validation test to see if there are still any
unabsorbed samples. With the alternate augmentation of R
and prototypes, we will eventually find a set of prototypes
that meets the validation test.

How to initiate R requires some explanation. There are
several data reduction methods that reduce the set of
training samples and still achieve a comparable
performance to the k-NN classification method. Wilson
and Martinez [14] provide very detailed descriptions of
the algorithms, as well as benchmark performances. Our
reason for using a reduction method is not to generate the
smallest and best-performing dataset, but to obtain a
sufficiently small and reduced dataset at a low
computational cost. For this reason, we choose the CNN
method, as proposed in Hart [15] and also described in
[14].

The final reduced dataset R, from which the FCP
constructs prototypes and passes them through the
validation test, can also be used to curtail the
computational cost of SVM. The idea is to build and solve
various SVM problems based on R in order to find the
optimal setting that includes the choice of decomposition
method, the kernel function, and the parameter values.
When the optimal setting has been determined, we
proceed to build and solve SVM problems based on the
full dataset to obtain the final solutions.

6. EXPERIMENT RESULTS
For training and testing purposes, we collected a large set
of Chinese, Japanese, and English character images from
newspapers and magazines. Half of the samples were
treated as training samples and the other half as test
samples. The number of samples in each language is listed
in Table 1. There are 889,846 samples of them in total.

Table 1. The number of samples in each category.
 Chinese Japanese English

#Training Samples 249,425 168,623 26,875
#Test Samples 249,425 168,623 26,875

All samples were normalized to a 64×64 bitmap, which
was further divided into 16×16 equal-sized blocks. From
these blocks, we obtained a 256-dimensional feature
vector. Each feature derived its value from the number of
black pixels in one of the 256 blocks. Figure 2 shows
some training samples.

A reduced dataset R, described in Section 4, was used in
both FCP and SVM to obtain their final solutions in an
acceptable amount of training time. The initial size of R,
obtained with the help of CNN, was 3,402. The FCP then
worked on this set, augmenting it with as many samples as
necessary. At the end of this process, the size of R was

16,128. The size of the full training dataset was 444,923;
thus, the reduction rate was 3.6%. In the process of
generating R, FCP built 1,137 prototypes, or 7% of R.
Figure 3 presents some constructed prototypes expressed
in gray-scaled images, where the gray scales represent the
feature values.

Figure 2. Training samples

Figure 3. Constructed prototypes

For the SVM method, the best solution was obtained by
using the one-against-others approach, with RBF as the
kernel function. The optimal γ and C were found at 0.0001
and 100 respectively. Note that the search range for γ and
C was set to {10k: k = -5, -4, …, 4, 5}. To obtain SVM
solutions, we used the software package in [16].

In Table 2, we list the training and test results of FCP and
SVM. The computing platform was Intel P4 with 3.4G
CUP and 3G RAM. The FCP training time included the
time to run CNN, which took 67 minutes. The SVM
training time included the time to search for the optimal
setting, which took 6 hours and 50 minutes. As mentioned
in Section 4, the search for the optimal setting of SVM
was carried out with a reduced dataset, obtained with the

help of FCP. The number of support vectors obtained by
SVM was 18,663, or 16 times the prototype size. This
large number of support vectors was responsible for the
long SVM test time, which was 16 times longer than the
FCP test time. Nevertheless, the two methods achieved
very close test results. The difference was 0.09%, with the
SVM method achieving a slightly better result.

We also came up with a confusion matrix for the three
languages, as shown in Table 3. The first row of this table,
for example, shows that almost all Chinese characters
were correctly classified. Only 225 and 200 of them were
miss-classified as Japanese and as English respectively.
Miss-classifications are attributed to poor quality of
character images and also to the similarity between certain
character types in the three languages.

7. CONCLUSION AND FUTURE WORKS
Using two effective methods for multi-class classification,
we solve the language identification problem for
individual character images. To do this, we use the same
methods, and even the same features, used for character
recognition, except that in the current application the class
types are languages, rather than character categories. As it
is not possible to apply these methods to a large training
dataset, we also propose a technique for producing a
reduced dataset. This is done in the prototype construction
process. The comparable test results obtained by these two
methods favor our choice of the prototype classification
method, since it requires much less time for the test
process. Some work remains to be done in this area. For
example, the acceleration of prototype matching and a
post-process to correct the slight classification errors are
two possible directions of future research.

Table 2. Training and test results of FFCP and SVM.

 Training Time #Support Vectors #Prototypes Test
Accuracy Test Time Computing

Speed (Chars/s)
FCP 8hrs 43mins 1137 99.83% 6mins 1235.90
SVM 13hrs 17mins 18,663 99.92% 1hrs 37mins 76.29

Table 3. Confusion matrix

 as Chinese as Japanese as English

Chinese 249,000 225 200

Japanese 170 168,393 60

English 50 42 26,783

8. REFERENCE
[1] N. Nobile, S. Bergler, C. Y. Suen, and S. Khoury, “Language

Identification of On-Line documents Using Word Shapes,”

Proceedings. Fourth International Conference on Document
Analysis and Recognition, vol. 1, pp. 258 - 262, Aug. 1997.

[2] T. Pham and D. Tran, “VQ-Based Written Language

Identification,” Proceedings. Seventh International
Symposium on Signal Processing and Its Applications, vol. 1,
pp. 513 – 516, July 2003.

[3] T. Nakayama, A.L. Spitz, “European language determination
from image,” Proceedings of the Second International
Conference on Document Analysis and Recognition, pp. 159 –
162, Oct. 1993.

[4] S. L.Wood, X. Yao, K. Krishnamurthi, and L. Dang,
“Language Identification for Printed Text Independent of
Segmentation,” Proceedings. International Conference on
Image Processing, vol. 3, pp. 428 – 431, Oct. 1995.

[5] A.L. Spitz, ”Determination of the Script and Language
Content of Document Images,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, pp. 235-245, March 1997.

[6] J. Hochberg, K. Bowers, and M. Cannon, ”Script and
Language Identification for Handwritten Document Images,”
International Journal on Document Analysis and Recognition,
vol. 2, pp. 45-52, 1999.

[7] P. Sanguansat, P. Yanwit, P. Tangwiwatwong, W.
Asdornwised, and S. Jitapunkul, “Language-based
Hand-printed Character Recognition: A Novel Method using
Spatial and Temporal Informative Features,” IEEE 13th
Workshop on Neural Networks for Signal Processing, pp.
527-536, Sept. 2003.

[8] D. Cooper, “How to Read Less and Know More:
Approximate OCR for Thai”, Proceedings of the 20th annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 216 – 225,
Philadelphia, 1997.

[9] V. Vapnik, The Nature of Statistical Learning Theory, New
York: Springer Verlag, 1995.

[10] F. Chang, C-C. Lin, and C-J. Chen, “Applying A Hybrid
Method To Handwritten Character Recognition,” Intern. Conf.
Pattern Recognition 2004, vol. 2, pp. 529-532, Cambridge,
2004.

[11] F. Chang, C-H. Chou, C-C. Lin, and C-J. Chen, A Prototype
Classification Method and Its Application to Handwritten
Character Recognition, IEEE Conf. System, Man, and
Cybernetics, pp. 4738-4743, Hague, 2004.

[12] J. C. Bezdek, Pattern Recognition with Fuzzy Objective
Function Algorithms. New York: Plenum, 1981.

[13] C.-W. Hsu and C.-J. Lin, A comparison of methods for
multiclass support vector machines, IEEE Transactions on
Neural Networks, vol. 13, no. 2, pp. 415-425, 2002.

[14] D. R. Wilson and T. R. Martinez, Reduction Techniques for
Instance-Based Learning Algorithms, Machine Learning, vol.
38, pp. 257-286, 2000.

[15] P. Hart, The condensed nearest neighbor rule, IEEE Trans.
Information Theory, pp. 515-516, May 1968.

[16] http://www.csie.ntu.edu.tw/Chinese_index.html.

