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ABSTRACT 

In this paper, we propose a new approach for identifying the 
language type of character images. We do this by 
classifying individual character images to determine the 
language boundaries in multilingual documents. Two 
effective methods are considered for this purpose: the 
prototype classification method and support vector 
machines (SVM). Due to the large size of our training 
dataset, we further propose a technique to speed up the 
training process for both methods. Applying the two 
methods to classifying characters into Chinese, English, and 
Japanese (including Hiragana and Katakana) has produced 
very accurate and comparable test results. 
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1. INTRODUCTION 
Identifying the language type of textual entities is an 
important research problem for document image analysis, 
because of the need to pre-classify documents or individual 
characters before nominating a proper subsequent module 
(layout analyzer, character recognizer, etc.) to work on them. 
The method we propose in this paper classifies a character 
image as Chinese, English, or Japanese. Documents 
comprised of these three character types are easy to find in 
real life (see Figure 1). Our method, however, is not limited 
to this application and is potentially useful for classifying 
characters in different combinations of languages. Our 
method is in fact almost identical to that used for character 
recognition. The only difference lies in the class types 
involved in the applications. At first, it may appear that 
employing a character-recognition method to identify 
language types runs the risk of generating too large an 
overhead. However, by using an effective machine-learning 
method, we are able to train a classifier to draw the 
demarcation along boundaries between language types, 
rather than character types. 

2. BACKGROUND 
A variety of methods have been proposed for this purpose. 
They can be classified into the following three categories. 

(1) The first category identifies coarse textual entities, 
such as textlines, text blocks, or complete 
documents, into different languages, assuming that 
the characters in the coarse entities belong to the 
same language (in other words, the textual entities 
are homogeneous) and have been recognized by an 
OCR technique. 

(2) The second category identifies the language type of 
homogeneous coarse entities, without first 
recognizing the characters in them. 

The third category identifies the language type of individual 
characters, without analyzing the coarse entities to which 
they belong. 

Methods in the first category are particularly appropriate for 
European languages, which have many characters in 
common. Nobile et al. [1] decompose European characters 
into 10 classes (A, x, I, g, j, U, D, Q, E, Z) and denote them 
as character shapes. Word shapes are then formed as 
sequences of these character shapes. For example, the string 
“Can’t get there from here” is coded as “AxxQA gxA 
AAxxx Axxx Axxx”. For each of the candidate European 
languages, one picks the top 50 most frequent word shapes, 
the top 5 most frequent word shapes that are unique to the 
language, the top 100 most frequent pairs of word shapes, 
and the top 100 most frequent triples of word shapes. The 
word shapes of a test textual entity are then compared with 
these four properties of each language to determine which 
language they belong to. Pham et al. [2] take a 
vector-quantization approach to language identification. 
Words of each candidate language are transferred to a 
vector of fixed size on the basis of the characters’ ASCII 
value. The codebook of each language, consisting of a fixed 
number of vectors, is then created with the help of a 
clustering algorithm. The same technique is applied to each 
test textual entity to create its own codebook. The language 



of a textual entity is then identified as the one whose 
codebook is most similar to the textual entity’s codebook. 
Nakayama and Spitz [3] define 12 shape classes of 
European characters. They then use the shapes of English, 
French and German as training data and apply LDA 
technique to perform classification. 

Methods in the second category perform classification 
without first recognizing character images. Wood et al. [4] 

propose an approach for classifying coarse textual entities 
into European languages, Russian, Arabic, Chinese, and 
Korean text. They first use horizontal and vertical filters to 
eliminate strokes shorter than 5 pixels or longer than 20 
pixels, after which they form document profiles by 
projecting filtered images on to the horizontal and vertical 
axes. These profiles reflect the characteristics of the 
underlying language and can therefore be used for 
classification.  

 
Figure 1. A document page comprised of English, Kanji (Chinese), and Japanese characters. 

 

Spitz [5] performs document language identification in 
two stages. In the first stage, a coarse textual entity is 
classified into a Han-based script (Chinese, Japanese, and 
Korean) or a Latin-based script, according to the upward 
concavity property of each character. In the second stage, 
character density is calculated for each textline to 
differentiate among the three languages in Han-based 
documents. For Latin-based documents, word shapes 
similar to those in [1] are used for further classification. In 
a different approach, Hochberg et al. [6] extract connected 
components from document images. They then compute 
five features for each component, namely, the relative 
vertical centroid, the relative horizontal centroid, the 
number of white holes, the number of black pixels in a 
unit area, and the component’s aspect ratio. Finally, they 
compute the mean, standard deviation, and skew of these 
five features for all components, resulting in a 
15-dimensional vector for one textual entity. The fisher 
linear discriminant is then computed for these vectors and 
used to identify the language. 

Methods in the third category treat individual characters 
as independent entities. Thus far, Sanguansat et al. [7] is 
the only work we have found in this category. They 
propose a method to distinguish Thai from English 
characters. Characters are first classified into those with a 
looped part and those without. In the former type, the 
looped part occupies a smaller portion in Thai characters 
than in English characters. In the latter type, cavities and 
vertical-to-horizontal-gradients are used for classification. 
However, there are certain Thai and English characters 
that are rather difficult to discern by either method. In 
such cases, context information can be used for 
disambiguation. 

Of the above methods, the first category serves as a 
post-process for OCR, while the other two serve as a 
pre-process. Also, the first two categories assume the 
homogeneity of textual entities, while the third category 
makes no such an assumption. For this reason, the third 
category is the most useful for dealing with documents in 



which there are no clues in the layout that can be used to 
determine language boundaries. This is the case with most 
multilingual documents. Thus, the problem faced in this 
category is probably the most difficult to deal with, 
since – unlike the other two categories – character images 
are treated as independent entities, rather than joint 
entities. 

We experiment with two machine-learning methods for 
this purpose: support vector machines (SVM) (Vapnik [9]) 
and a prototype classification method (Chang et al. 
[10-11]). Both techniques have proved useful for character 
recognition applications, especially for the recognition of 
handwritten digits and Chinese/Japanese characters. When 
applied to the current problem, both methods achieve high 
and comparable accuracy rates. This fact qualifies them as 
language classifiers. The SVM, however, requires longer 
training and testing times than the other method for the 
current application, which is characterized by a large 
training dataset and high imbalance among data of 
different class types. We thus recommend the prototype 
classification method for this particular application. 

The remainder of this paper is organized as follows. In 
Section 2, we describe the improved prototype learning 
method. Section 3 details the necessary computations for 
obtaining the best SVM solutions. In Section 4, we 
present a special technique for speeding up the two 
methods. Section 5 contains the experiment results.  
Finally, in Section 6, we present our conclusions and the 
direction of future work. 

3. THE PROTOTYPE CLASSIFICATION 
METHOD 

The prototype classification method we employ in this 
paper is a modification of the method described in [11]. In 
the training phase, a learning algorithm is used to 
construct prototypes from training samples. The general 
framework of the learning process consists of two loops. 
The outer loop decides whether the current set of 
prototypes is sufficient for classifying all training samples 
properly. If this is the case, the process terminates. 
Otherwise, the outer loop decides which class types need 
to have more prototypes constructed, and transfers the 
problem to the inner loop. The inner loop behaves like a 
traditional clustering technique. It computes the location 
of cluster centers for the number of prototypes specified 
by the outer loop and these centers are taken as our 
prototypes. 

Of the clustering techniques available, we adopt the fuzzy 
c-means (FCM) method (Bezdek [12]). As indicated in 
[11], this algorithm yields slightly higher accuracy rates 
than the K-means (KM) clustering algorithm. There is, 
however, a problem associated with incorporating FCM 
into the prototype construction process. It is possible that 
the process may not terminate within a finite number of 

iterations. As a remedy for this potential problem, [11] 
suggests that a sample S should be abandoned if recruiting 
S as a seed to generate new prototypes does not reduce the 
number of unabsorbed samples. A sample is absorbed if it 
matches in class type with the nearest prototype. 

In our application, we have observed that this remedy may 
cause another problem due to the high imbalance of data. 
The data-imbalance issue refers to the situation where 
training samples in some class types outnumber those in 
other class types. In our application, the number of 
Chinese samples is 9.3 times the number of English 
samples, while the number of Japanese samples is 5.3 
times the number of English samples. These samples 
clearly constitute an unbalanced dataset. Thus, in the early 
stage of prototype construction, prototypes of populous 
class types may locate further away from class boundaries 
than those of under-populated class types, and the number 
of unabsorbed samples may increase transiently with the 
number of prototypes. At this point, one should allow the 
creation of more prototypes, instead of abandoning them. 
Based on this intuitive idea, we modify the prototype 
construction process as follows. For convenience, we refer 
to samples of class type C as C-samples, and prototypes of 
class type C as C-prototypes. Also, the range of a 
C-prototype P is the set of all C-samples that find P as the 
nearest C-prototype. 

 

Step 1. Initiate a prototype for each class type. 

Step 2. Perform the absorption test. If no more samples 
are unabsorbed, terminate the process. 

Step 3. Select a C-sample from the unabsorbed C-samples 
for each class type C. 

Step 4. Use FCM to determine n+1 C-prototypes, using 
the newly selected C-sample and existing n 
C-prototypes as seeds. Check if all the n+1 
C-prototypes have a non-empty range. If some of them 
are empty, set the newly selected C-sample as futile 
and return to Step 3; otherwise, return to Step 2. (Note 
that a futile sample is no longer taken as an 
unabsorbed sample.) 

 

The non-emptiness of all prototype ranges guarantees the 
termination of the process within a finite number of 
iterations, since – in the worst case – all prototype ranges 
will shrink to a single-member set, ensuring that all 
samples (except those that are declared futile) are 
absorbed. Following [11], we call the above process a 
fuzzy construction process (FCP). 

4. SUPPORT VECTOR MACHINES 
SVM is a powerful tool for binary classification. SVM is 



an attractive technique because, in addition to the 
optimality of its solutions, it allows users to choose from a 
variety of options. The many choices, however, require 
great caution and perseverance on the user’s part, since 
the experimental work can be tedious and may require 
special techniques to reduce the otherwise excessive 
amount of computing time. In this section, we list all the 
relevant options for our application. Then, in the next 
section, we describe a technique of our own to speedup 
the training process. 

The first option is the type of decomposition we have to 
make in order to solve our problem, which is to classify an 
object into three class types. In order to apply it to a 
multi-classification problem, we have two choices: the 
one-against-one approach and one-against-others 
approach (Hsu and Lin [13]).  

The second option is the kernel function, which specifies a 
measure for the similarity between two vectors. The third 
option is the value of the parameters associated with the 
kernel functions. 

The fourth option is the parameter C, which specifies the 
level of tolerance for miss-classification. The purpose of 
this parameter is to control possible over-fitting in the 
training process. 

To determine the best values for all these choices, we have 
to go through a cross-validation process, in which we 
randomly divide the training samples into K equal-sized 
parts, called K folds. We then train an SVM model using 
K-1 folds as training samples and the remaining fold as 
test samples. We run this process K times, each time using 
a different fold as the test data. We then take the average 
of the test accuracy rates of all K runs. This test enables us 
to determine the average SVM accuracy rate for one 
combination of options. 

5. SPEED-UP WITH THE GENERATION 
OF A REDUCED DATASET 

The size of the training samples for our application is too large. 
Thus, a speedup technique must be used to curtail the 
lengthy computation time.  

The idea is to initiate a reduced dataset R using some data 
reduction technique. We then apply FCP to this dataset to 
determine both the number and the location of prototypes. 
When FCP process is finished, we pass the prototypes 
through a validation test to check if all training samples 
have been absorbed, except, of course, those that have 
been declared futile. The FCP automatically meets the 
validation test, if it works on the complete set of training 
samples. However, since it works only on the reduced 
dataset, some training samples outside the dataset may be 
found to be unabsorbed. If this is the case, we add the 
unabsorbed samples to R and proceed with a new run of 
FCP on the augmented R. This time, the FCP starts with 

the prototypes constructed in the previous run as the initial 
prototypes. The resultant prototypes are then passed 
through a validation test to see if there are still any 
unabsorbed samples. With the alternate augmentation of R 
and prototypes, we will eventually find a set of prototypes 
that meets the validation test. 

How to initiate R requires some explanation. There are 
several data reduction methods that reduce the set of 
training samples and still achieve a comparable 
performance to the k-NN classification method. Wilson 
and Martinez [14] provide very detailed descriptions of 
the algorithms, as well as benchmark performances. Our 
reason for using a reduction method is not to generate the 
smallest and best-performing dataset, but to obtain a 
sufficiently small and reduced dataset at a low 
computational cost. For this reason, we choose the CNN 
method, as proposed in Hart [15] and also described in 
[14]. 

The final reduced dataset R, from which the FCP 
constructs prototypes and passes them through the 
validation test, can also be used to curtail the 
computational cost of SVM. The idea is to build and solve 
various SVM problems based on R in order to find the 
optimal setting that includes the choice of decomposition 
method, the kernel function, and the parameter values. 
When the optimal setting has been determined, we 
proceed to build and solve SVM problems based on the 
full dataset to obtain the final solutions. 

6. EXPERIMENT RESULTS 
For training and testing purposes, we collected a large set 
of Chinese, Japanese, and English character images from 
newspapers and magazines. Half of the samples were 
treated as training samples and the other half as test 
samples. The number of samples in each language is listed 
in Table 1. There are 889,846 samples of them in total. 

Table 1. The number of samples in each category. 
 Chinese Japanese English

#Training Samples 249,425 168,623 26,875
#Test Samples 249,425 168,623 26,875

 

All samples were normalized to a 64×64 bitmap, which 
was further divided into 16×16 equal-sized blocks. From 
these blocks, we obtained a 256-dimensional feature 
vector. Each feature derived its value from the number of 
black pixels in one of the 256 blocks. Figure 2 shows 
some training samples. 

A reduced dataset R, described in Section 4, was used in 
both FCP and SVM to obtain their final solutions in an 
acceptable amount of training time. The initial size of R, 
obtained with the help of CNN, was 3,402. The FCP then 
worked on this set, augmenting it with as many samples as 
necessary. At the end of this process, the size of R was 



16,128. The size of the full training dataset was 444,923; 
thus, the reduction rate was 3.6%. In the process of 
generating R, FCP built 1,137 prototypes, or 7% of R. 
Figure 3 presents some constructed prototypes expressed 
in gray-scaled images, where the gray scales represent the 
feature values. 

 
Figure 2. Training samples 

 
Figure 3. Constructed prototypes 

For the SVM method, the best solution was obtained by 
using the one-against-others approach, with RBF as the 
kernel function. The optimal γ and C were found at 0.0001 
and 100 respectively. Note that the search range for γ and 
C was set to {10k: k = -5, -4, …, 4, 5}. To obtain SVM 
solutions, we used the software package in [16]. 

In Table 2, we list the training and test results of FCP and 
SVM. The computing platform was Intel P4 with 3.4G 
CUP and 3G RAM. The FCP training time included the 
time to run CNN, which took 67 minutes. The SVM 
training time included the time to search for the optimal 
setting, which took 6 hours and 50 minutes. As mentioned 
in Section 4, the search for the optimal setting of SVM 
was carried out with a reduced dataset, obtained with the 

help of FCP. The number of support vectors obtained by 
SVM was 18,663, or 16 times the prototype size. This 
large number of support vectors was responsible for the 
long SVM test time, which was 16 times longer than the 
FCP test time. Nevertheless, the two methods achieved 
very close test results. The difference was 0.09%, with the 
SVM method achieving a slightly better result. 

We also came up with a confusion matrix for the three 
languages, as shown in Table 3. The first row of this table, 
for example, shows that almost all Chinese characters 
were correctly classified. Only 225 and 200 of them were 
miss-classified as Japanese and as English respectively. 
Miss-classifications are attributed to poor quality of 
character images and also to the similarity between certain 
character types in the three languages. 

7. CONCLUSION AND FUTURE WORKS 
Using two effective methods for multi-class classification, 
we solve the language identification problem for 
individual character images. To do this, we use the same 
methods, and even the same features, used for character 
recognition, except that in the current application the class 
types are languages, rather than character categories. As it 
is not possible to apply these methods to a large training 
dataset, we also propose a technique for producing a 
reduced dataset. This is done in the prototype construction 
process. The comparable test results obtained by these two 
methods favor our choice of the prototype classification 
method, since it requires much less time for the test 
process. Some work remains to be done in this area. For 
example, the acceleration of prototype matching and a 
post-process to correct the slight classification errors are 
two possible directions of future research.

Table 2. Training and test results of FFCP and SVM. 

 Training Time #Support Vectors #Prototypes Test 
Accuracy Test Time Computing 

Speed (Chars/s) 
FCP 8hrs 43mins  1137 99.83% 6mins 1235.90 
SVM 13hrs 17mins 18,663  99.92% 1hrs 37mins 76.29 

 

Table 3. Confusion matrix 

 as Chinese as Japanese as English 

Chinese 249,000 225 200 

Japanese 170 168,393 60 

English 50 42 26,783 
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