
Building an Ontology-Based Community Portal for Scientific Applications
Ching-Long Yeh and Jia-Yang Chen

Department of Computer Science and Engineering
Tatung University

40 Chungshan N. Rd. 3rd Sec., Taipei
Taiwan

chingyeh@cse.ttu.edu.tw, g9106028@ms2.ttu.edu.tw
Abstract

The Semantic Web provides a metadata layer upon the information pool of the current
web. The metadata layer is represented by using machine processable language
according to the schema of ontology. We have developed an ontology-based system to
manage the content of the metadata layer. In this paper, we give an overview of the
system architecture and then show the application of the system for scientific web
sites. We follow a simple knowledge engineering step to build ontology for the fish
domain, and then create metadata for unstructured, semi-structured information usinf
annotation tool and wrapper program. After creating the metadata in RDF we import
them into the knowledge warehouse of the system and then show the functionality of
the conceptual search and semantic navigation. We have made a performance
evaluation for comparing building the knowledge schema component using either
Prolog or frame-based system. The result shows that the latter achieve better
performance.
1. Introduction

In the age of information glut, it is necessary to find a good way to manage
information to help human consumption. The Semantic Web technology advocates a
metadata layer beyond the information pool of the current web. The content of the
metadata layer is represented by using machine processable languages, for example,
RDF [1] and Topic Maps [2]. Thus automatic and intelligent services, other than the
search engine and directory navigation services of the current web can be made based
on the metadata layer. The goal of the Semantic Web is to create a universal medium
for the exchange of data and to facility to put machine-understandable data on the web
on interconnect personal information management, enterprise application integration
and global sharing of commercial information. We have developed an ontology-based
portal system architecture that supports intelligent services for user to access the
content at a higher level of abstraction [14]. In this paper, we aim at demonstrating the
use of the system to build a community portal for scientific applications.

The Semantic Web framework can be briefly summarized as providing a
metadata layer in content-interoperable languages, such as RDF [1] and Topic Maps
[2], which intelligent or automatic services can be made by machines based on the

layer. As a meta-layer architecture upon the information pool of the current web, a
system of the layer consists of: a knowledge warehouse that is used to store the
metadata along with the knowledge schema, a front end component that provides
various automatic or intelligent services for user, and a backend component that
accepts the metadata of the information pool and saves in the repository.

To build a community on the system, the first step is to construct ontologies
for the domain in question. Reuse of exising ontologies is encouraged as described in
former research [3]. In this paper, we consult the ontologies used in scientific
community portals, such as KA2 [4], ITTalks [5], and adapt to make the ontology for
the purpose of this research. The ontologues are used as the schema of the knowledge
warehouse. The metadata for unstructured information is created using an authoring
tool. Semi-structured infromation, such as relational database, is converted into RDF
by using wrapper programs. Metadata in RDF can be created using ontology editor,
such as Protégé-2000 [6]. The metadata from various sources is coverted into the
knowledge warehouse using the converters provided by the system. Then we can test
the function of the community portal.

In Section 2, we describe the architecture of the ontology-based portal system.
In Section 3, we describe ontology construction and metadata collection. In Section 4,
we describe the functionality of the system by inserting a knowledge warehouse of
scientific domain. Finally we make conclusion.
2. System Architecture of an Ontology-based Portal

We construct an ontology-based web portal as showed in Figure 1. There are
three main components in this architecture: back end, knowledge warehouse and front
end service. The goal of the back end is to act as the interface of metadata sourced from
the outside world to the system. As mentioned previously, metadata is associated with
resources ranging from unstructured to structured documents. We design an authoring
tool that fetches unstructured document, like plain text or HTML document. The tool
provides user with a graphical interface that user can mark up portion of text and add
appropriate metadata for that part of text. The authoring result can be exported either in
standard content representation language, like RDF, or the language used by the
inference engine. Alternatively, the backend accepts standard metadata in RDF. We use
Protégé 2000 [6] to produce RDF documents for the purpose of testing.

In the middle of the architecture is the knowledge warehouse component that
functions as the knowledge source consulted by the inference engine. It provides
repository to store ontology schema and instances of metadata. Since in this paper we
employ the inference engine of a frame-based system, flex [7], an essential
consideration is that the content of the repositories must be accessible by the inference
engine. An application written in flex, is composed of a knowledge base and a number

of service routines. The former part consists of frames and instances of frames that
correspond to ontology schema and metadata instances, respectively. The latter is a
number of inference rules that interact with user to achieve user’s goal. The repository
of the knowledge warehouse component can therefore be seen as the extension of the
knowledge base of a flex application.

Back end

Knowledge
warehouse

FLEX Inference Engine

Semantic
Navigation

Conceptal
Search

Front end

Database monitor and
administration

Protege
2000

Annotation
Editor

Wrapper
program

RDF to KSL
translator

RDF to
triple

translator

RDF triple
store

KSL instance
store

Flex ontology
repository

Database
RDFSTEXT,

HTML

Figure 1: System architecture of an ontology-based portal

According to their functions, we divide the repository into two parts: one for
ontology schema and the other for instances of metadata. The former is to be loaded
into the frame system; thus the ontology schema is converted into the frame
representation and then stored in the appropriate directory. For the latter part, we
develop a RDF triple store based on a relational database. Alternatively, we provide

file-based store of the metadata instances in frame instances. Translators need to be
developed to convert RDF documents into triples and frame instances. The converted
results are then stored in the repository accordingly.

The front end service component is to provide service functions for user and
administrators to access or modify the metadata contents. In this paper, we focus on
the development of discovery services, including the conceptual search and semantic
navigation, to access the metadata content stored in the repository. The conceptual
search and semantic navigation is based on the flex inference engine. User can use this
interface to access information on the web site. It is included a tree navigation and
data search. We also provide a query language for advanced query.
3. Collecting Metadata and Storing in Knowledge Warehouse

In this section we describe the process of enriching the content of the
knowledge warehouse. We first establish the schema of the knowledge warehouse.
Then we store the metadata collected from sources of different structures in the
knowledge warehouse.
3.1 Ontology construction
Many people acknowledge the advantage of using ontology on their applications.
However, it is not an easy task to build ontology for specific domains of applications.
It requires knowledge that involves various stakeholders including domain experts,
system analysts and technologists. In large and complex application domains, the
construction of ontology can be even lengthy and costly. Thus adopting
well-established steps towards the creation of ontology becomes a crucial issue when
building a knowledge warehouse of an ontology-based portal. The knowledge
engineering methodology [8], for example, provides simple while precise steps
towards the creation of ontology building from existing sources or starting from
scratch. In this paper we create ontology by consulting existing sources. Before
resorting to existing sources of ontology, we have to determine the domain and scope
to guide the acquisition of the ontology.

When we determine the scope of the knowledge domain, we can find the some of
ontology in the ontology library of DAML, for example, or the other sources of
ontology. We choose suitable ontology from the ontology library and trim the
unnecessary class and properties. For example, in our ontology we would like to
describe the concepts of people, events and things. We find them in the ontology
library and we get the ontology of KA2. The ontology of KA2 provides some
classification of the scientific domain and it describes some relation about people,
events and things. The KA2’s ontology describes ‘event’, ’organization’, ‘person’,
‘product’, ‘project’, ‘publication’ and so on. They want to use ontology to aid them to
do the knowledge acquisition.

We try to manage the information about scientific domain and provide the
relevant knowledge for the expert or researcher of the favorite domain. About the
general or standard information such as the group meeting announcement, conference
declaration and some important activity, we can announce these data according to the
definition of metadata. We can use the class of ‘event’, ’organization’, ‘person’ in
KA2’s ontology to describe the general information. About the information of
research like the information about fish and animal, we also want to find a suitable
ontology to describe these data. We get the fish information from the fish database of
Academia Sinica, and we are according to the classification system of the fish web
site and its data to build the hierarchy of data. After we determine what kind of the
thing, the general information or the information of research, which we want to
process, we can get a suitable ontology and begin to choose and modify the ontology
for our project.
There are three main approaches to aid large-scale ontology construction. The first
one facilitates manual ontology engineering by providing natural language processing
tools, such as editors and ontology import tools [6, 11]. The second approach relies on
the machine learning and automated language processing to extract concepts and the
relation of the concept. The last approach combines the first one approach with the
second approach, but few systems use both approach. There are many tools about the
first approach, such as Kaon [9], Protégé-2000 [6], Chimeara [10], and OntoEdit [11].
In this thesis we employ this approach to build our ontology. This approach can save a
lot of time to rebuild the similar ontology and we can reuse the similar ontology by
importing and modifying the different concept. There are researches using the second
approach with natural language processing [12]. They make use of WordNet [13] as
the knowledge source to extract the semantic concepts and try to automate fetch the
important concept in the complex document.
Creation of computer accessible knowledge begins between the two extremes of very
formal and very informal knowledge. In general, we will process the informal
knowledge for a kind of formal knowledge. We in common use the method of adding
annotation to describe the data but annotating information sources by hand is a time
consuming task. Therefore we want to use a semi-automatic or automatic tool to help
people annotate information sources. We talk about un-structured data,
semi-structured data and structured data how to transform into the knowledge
warehouse.
3.2 Creation of metadata instances
About Un-structured Data
How to get the useful information from the un-structured document is an important
thing for the issue of the information collection. We develop an annotation tool for

semi-automatically processing the data now that machine cannot automatically
process the un-structured document. The kind of annotation tool builds for facilitating
the annotation of the unstructured information. We know, there are many information
appearances in the HTML document, but the computer cannot access this information.
These data just display for people reading not for machine reusing. So we use the
annotation editor to choose the important information and annotate them with node
label. The node label lights up the significant message in the pure text area, such as
the reporter of that seminar, the time of the speech and the address of the group
meeting. We can use this method to semi-automatically transform the informal
knowledge into the formal knowledge and store them in the knowledge warehouse.
Figure 3-1 shows that we have built an annotation editor to help people to create the
knowledge from the un-structured data.

Figure 3-1: Screen shots of the annotation Editor
About Semi-structured Data
We often need to find a regular method for processing the information in a large
number of data. With this idea, we design a wrapper program that automatically
converts the semi-structured data which store in the relation database into the
knowledge warehouse. We can integrate the heterogeneous data into the common
formal format. These programs are designed for each specific case. Therefore coding
the transformation program is the key point for creating the information from the
semi-structured data pools.
About structured Data

Directly producing the structured data for knowledge expression is the fast way to
achieve the goal of data exchange. Therefore the new data we should consider to
directly make them with formal structure. We can create the structured data with some
editors for helping us quickly create these data. For example, we can use protégé 2000
directly create structured information. Protégé 2000 allows us to build a new data with
formal knowledge for information processing, as shown in Fig 3-2. If we want to
describe the information of time, we just choose the relational class in the editor and
write the data in the slot. After the editor produces the structured information, we can
store these data in the knowledge warehouse.

Figure 3-2: The structured data editor

3.3 Inference Engine and Repository

We use flex, a frame-based system, as the inference engine. flex is a Prolog-based
toolkit for us to design an intelligent system. It is an expressive and powerful expert
system toolkit which supports frame-based reasoning with inheritance, rule-based
programming and data driven procedures fully integrated within a logic programming
environment. It contains its own English-like Knowledge Specification Language
(KSL). We can describe the data with KSL and write some rules to process the
relation of data.
Our repository consists of two kinds of stores: one is directory-based file system and
the other is relational database. The file system is used to store the frame instances
represented in the language of flex, KSL. The file system is tree-structured directory.
We nominate a Root directory corresponding to the root of ontology schema. Down

the Root directory are subdirectories of the corresponding subclasses in the ontology
hierarchy. In each directory is a file that stores the instances of metadata of the
corresponding class in the ontology. The file contains instances in KSL. Each time
when a metadata instance file in RDF is converted into KSL, the resulting instances
are appended in their files.
The file system structure mentioned above is suitable to store instances in KSL and is
easy to be accesses by the inference engine of flex. During the course of executing a
service program, the inference engine can load the required instances by giving the
paths of the files that contains the instances of the classes in question. Upon accepting
the concepts user is looking for, the conceptual search program recognizes the
associative classes, finds out the paths and then loads the corresponding file according
to the path. For example, when we want to find employee, we will to find person class
first. We know employee is a subclass of person, so we would search the data about
employee under person class. Because the data store in machine with file system
architecture, the machine can map to human’s concept easily.
In order to deal with the structures in RDF documents and promote the efficiency of
search, we provide a persistent store on relational database for RDF triples. The RDF
triple store consists of five tables: literals, namespaces, predicate,
resources and triples. They not only include the information in the tables but
show the relation of concept with identified number. The conceptual relations are
implicitly stored in those tables. Therefore it is difficult to know the connections
between subjects and objects. The relationships can be revealed by appropriate
programming. After the program returns the relations corresponding to the original
conditions, user can have a chance to know the information.
The literal table stores the literal which appear in RDF document. There are
many differences namespace in the namespaces table. The resources table
describes the class and namespace. The triples table connects the literal, class and
namespace. In order to access the data in the triple store database, we design an
internal query language. The internal query language helps to query the data in the
relation database and produce the conceptual class and the answers. It is an interface
for inference engine to access the real data.
4. Application of the System
We encode the content of web page in a machine-understandable semantics in the
form of ontology. And we use our agents, the search and navigation, on the semantic
web collection the user requirement. In the fact, the information on the web is too
large and changes too quickly for any agent to process the complete knowledge on the
whole existence knowledge pool. Even if the agent can process the knowledge, it
costs too long time. However, with an open world, an agent may spend an unbound

amount of time to find an answer to a query when the answer none exists. We use the
local close world in our system to overcome this problem. Therefore, when we decide
inserting a knowledge ware of scientific domain, the bound of the knowledge is
decided. We believe if the semantic web does not use this approach to solve this
problem, they cannot stop to find the answer when the answer is not found on the web.
Therefore one of the ability on our system is that we can show the answer in the
bounded time.

For scientific information such as fish, animal and plant information, we can
use the metadata to describe the relation of the resources. Our system architecture
allows us to add semantic content into the knowledge warehouse, to relate this content
to its ontology and to provide contextual information for users about the domain.
Using this information, the query service can provide more accurate responses than
are possible with the search engines available on the Web. We have applied these
techniques to the domain of bioscience. According to the web page of fish, we build a
prototype of knowledge warehouse about it and provide user to access the knowledge,
as shown in Fig 4-1. It provides user to access the data using semantic navigation and
conceptual search. For the development of general information such as the time and
address of a meeting, the reporter of a seminar, we can annotate with the note label to
describe these issues.

Figure 4-1: The fish knowledge access

It is also an important message in the scientific domain and we can access the
information with more precise query.
We obtain the data from the fish database of Academia Sinica. The web site provides
abundant fish information in Taiwan. We use a wrapper program to convert these data
in our data store. According to the classification system of the fish web site, we know
that there are total 252 families about fish. We use the fish classification of the world
to describe the fish information. According to the family of the fish we give fish a
rough classification. Therefore we build 252 subclasses under the class of fish, and
every class has at last one instance. We describe these data with KSL and store these
data in the file system and the RDF triple store.

The fish database of Taiwan contains lots of fish information in Taiwan. They
classify the fish by its family, and provide the picture and sound about a fish. We
describe the data form the knowledge provider and manage these data using our
system. We can navigate all of the family and find the detail information about the
fish with linking the remote resource. The user also can use the internal query
language directly access the data in the repository, but the complex query language
will be the boring thing to the beginner. User can also use the navigation or search
interface to find the information about the fish

We provide three methods to search data in the knowledge warehouse,
conceptual search, semantic navigation and internal query language. The internal
query language is an infrastructure for conceptual search and semantic navigation. In
order to access our database, we design an internal query language. We take an
example to explain how to use this query language. If we want to find data and we
know that the data is in ‘person’ class and it has the predicate called ‘lastname’, we
can describe the request as Ex. 5-1.
sc('ka2new_Person',[lastname-x],C_Out,I_Out). Ex. 5-1

Ex. 5-1 is a way to query some instances which belong to the class of
'ka2new_Person'. 'ka2new', the prefix of the 'ka2new_Person', means the namespace
of the 'Person' class. It is a way to discriminate the person in the domain of 'ka2new'
form other person in another domain. The low case of x means that we do not care the
value in the field. Therefore the meaning of the foregoing query is to find some
classes which are related to 'ka2new_Person' and have a property of 'lastname'. If the
search engine can find the instance of this query, the answer exists in I_Out. The
result of internal query language is shown in Fig 4-2.

Figure 4-2: The result of internal query language
For conceptual search, we design a graph interface for user to input their data. In

this method of search, we not only use property and value to find the answer but we
are according to the class of concept to find the results. The search engine finds all
relational concept with certain class and then put the answer to the user. For example,
you want to find a person but you do not remember the name of this person. You can
search the class of person and use the name of predicate to find the relation data.The
semantic navigation helps people to find the resource under some classes. The users
can navigate the concept on the repository. The label of tree list shows the concept’s
name. We know the relation of concept with the ontology. According the description
of ontology, the tree’s relation can be built. So the navigation tree describes the
relationship between class and class in the ontology. The semantic navigation will
accept the user’s request and send this request to the conceptual search engine; then
product the answer. Each of queries is the query a class which you choose. It will
show all the instances under this class.
Conclusions
We have built an ontology-based community portal for scientific application to test
the functionality of the system we developed previously. The metadata for describing
information with various degrees of structures are created using RDF. The created
results are loaded into the knowledge warehouse of the having ontology schema in it.
We have tested the conceptual search and semantic navigation services. They can

provide precise way of getting information of interest. We have made a comparison of
performance by using Prolog and frame-based system. The result shows that the latter
achieve better result. In the future we will employ knowledge engineering
methodology, CommonKADS, as the basis to develop knowledge management
system using our system.
Acknowledgements
This research was supported by the Taiwan National Science Council under Contract
No. NSC92-2422-H-036-322.
References
[1] Brian McBride, Resource Description Framework (RDF): Concepts and

Abstract Syntax, W3C Recommendation, http://www.w3.org/TR/rdf-concepts/,
10 February 2004.

[2] Steve Pepper and Graham Moore, XML Topic Maps (XTM) 1.0 Topic Maps. Org
Specification, http://www.topicmaps.org/xtm/index.html.

[3] DAML Ontology Library, http://www.daml.org/ontologies/
[4] York Sure, KA2-Knowledge Acquisition Community Ontology,

http://ontobroker.semanticweb.org/ontos/ka2.html, 2000.
[5] R. Scott Cost et al. ITTALKS: A Case Study in the Semantic Web and DAML,

IEEE Intelligent Systems, Vol. 17, No. 1,pp. 40-47, January/February 2002.
[6] An annotation tool, Protégé-2000, http://protege.stanford.edu/.
[7] Clive Spenser, Flex Tutorial, http://www.lpa.co.uk/ind pro.htm, 2002.
[8] Natalya F. Noy and Deborah L. McGuinness, Ontology Development 101: A

Guide to Creating Your First Ontology,
http://protege.stanford.edu/publications/ontology_development/ontology101.ht
ml

[9] KAON, http://km.aifb.uni-karlsruhe.de/kaon2.
[10] Chimara, Knowledge Systems Laboratory, Stanford University,

http://www.ksl.stanford.edu/software/chimaera/
[11] OntoEdit, http://www.ontoprise.de/products/ontoedit.
[12] Institute AIFB, TUTORIAL Development and Applications of Ontologies,

September 2000.
[13] WordNet, http://www.cogsci.princeton.edu/wn/.
[14] Ching-Long Yeh, Development of an ontology-based portal for digital archive

services, International Conference on Digital Archive Technologies
(ICDAT2002), Academia Sinica, Nankang, Taipei, Taiwan, 2002.

