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ABSTRACT

Media hashing s an alternative to achieve many applications
previously accomplished with watermarking. The major dis-
advantage of the ezisting media hashing technologies is their
poor resistance to geometric attacks. In this paper, our aim
is to propose a geometry-invariant image hashing scheme,
which can be employed for copy detection and content au-
thentication of digital images. Our scheme is mainly com-
posed of two components: (i) mesh-based robust hash gener-
ation and (i) hash database construction for error-resilient
and fast matching. In addition, we further investigate the
issues of robustness, error analyses, complezity, granular-
ity, and scalability for the proposed image hashing system.
Ezhaustive experimental results obtained from benchmark at-

tacks have confirmed the performance of the proposed method.

Keywords: Copy detection, Media hashing, Mesh, Robust-
ness, Searching, Similarity

1. INTRODUCTION

With the advancement of multimedia and networking tech-
nologies, it becomes easy to copy the original completely
and distribute the illegal copies rapidly over the Internet.
In order to trace unauthorized uses of digital contents, me-
dia hashing technologies have attracted much attention re-
cently in digital content management. In contrast with data
hiding, the main characteristic of media hashing is its non-
invasive property, which means that no information is re-
quired to be embedded into digital content. On the con-
trary, a hash sequence for a specific media data needs to be
extracted to represent its condensed essence. Analogous to
media hashing, there exists some synonymous terminologies
in the literature including fingerprinting, digital signature,
and passive/non-invasive watermarking. The major differ-
ence that distinguishes media hashing from watermarking
is that the former measures “similarity” and needs to work
together with a feature database while the latter measures
“originality” and can operate as a standalone system. On
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the other hand, media hashing is also similar to media re-
trieval in that both needs to transfer a media data into a
short string for compact representation. The technical di-
versity between them is that media hashing is required to
resist (either malicious or incidental) attacks. Therefore,
several applications that call for robust identification of me-
dia contents are seeking robust media hashing methods [6,
16]. The technical need for media hashing cannot be ac-
complished by traditional cryptographic hashing functions
because even one bit error in a hash sequence can lead to
represent entirely different contents. However, reasonable
distortions are not harmful to the visual quality and com-
mercial value of multimedia data.

Most of the existing media hashing methods are developed
for audio identification [16], in this paper, we are devoted
to the study of image hashing. First of all, literature review
about image hashing will be discussed as follows. In 1998,
Chang et al. proposed a wavelet-based Replicated IMage
dEtector (RIME) [2] to search unauthorized image copying
on the Internet. They used color features only to repre-
sent an image and then used the vector quantization (VQ)
technique to index the images. Their system’s capability
is remarkably prohibited from resisting extensive geomet-
ric distortions. To speed up the detection of near-replicas
of images in their RIME system, Chang et al. proposed a
new clustering approach [3] that can improve the I/O effi-
ciency by clustering and retrieving relevant information se-
quentially on and from the disk. Recently, Meng and Chang
[14] used multi-scale color and texture features to character-
ize images and employed dynamic partial function (DPF) to
measure image perceptual similarity. Although DPF outper-
formed traditional distance metrics, the adopted image fea-
ture was global in that resistance to geometric distortions is
inherently limited. In [9, 10], digital signature has been pro-
posed for image authentication. Lin and Chang [9] created
the mutual relationship of pairwise block-DCT coefficients
to distinguish JPEG compressions from malicious modifi-
cations. Lu and Liao [10] built the so-called “structural
digital signature” from the multiscale structure of wavelet
transform to tolerate incidental manipulations and reflect
intentional manipulations. However, the ability of resisting
geometric manipulations was a lack of [9, 10]. In [4], Fridrich
and Goljan proposed a robust/visual hashing method. Their
hash digests of digital images were created by projections
of DCT coefficients to key-dependent random patterns. In
[20], Venkatesan et al. proposed an image hashing tech-
nique, which contains (i) random tiling of an image’s coarse



subband (using a three-level Haar wavelet decomposition);
and (ii) hash generation from statistical feature extraction of
tiles. However, the two methods [4, 20] only allows limited
resistance to geometric distortions. In [8, 19], image hashing
methods were proposed based on the Radon transform by
exploiting its affine invariance. However, resistance to geo-
metric distortions is greatly limited if the incoming attacks
go beyond affine distortions. In [15], Mihcak and Venkate-
san proposed an iterative geometric image hashing method.
Their method can only withstand slight geometric distor-
tions. In [7], Kim proposed an image copy detection scheme
by means of ordinal measures of AC coefficients in the 8 x 8
DCT domain, i.e., the magnitudes of AC coefficients in a
block were ranked in descending order to represent an im-
age. However, this system basically cannot resist geometric
distortions.

It is evident from the above survey that the common disad-
vantage of the existing image hashing techniques is their lim-
ited robustness against geometric distortions (For instance,
resistance to rotations is restricted to very small angles).
The main cause lies in the fact that the previous methods
did not really deal with the problem of combating geometric
attacks. In view of this, the purpose of this paper aims to
treat this challenging problem seriously. We shall propose a
robust mesh-based image hashing scheme for content copy
detection, identification, and tracing in a large database.
Our major contribution is to achieve robustness against ex-
tensive geometric distortions (e.g., standard benchmark like
Stirmark3.1 and Stirmark4.0 [17, 18]). Although the con-
cept of image meshing has been applied to watermarking [1],
we have taken notice of the stability of mesh generation that
is closely related to the success of intended purposes. Con-
sequently, we present a robust mesh extraction method such
that it won’t be easily harmful to mesh-based hashing. We
also present a robust mesh-based hash extraction method
by considering content position-dependent features. Exten-
sive results obtained from benchmark attacks have further
confirmed the robustness of the proposed scheme.

In addition to the robustness issue, the practical use of
an image hashing system requires fast search in a large
database. In this paper, we will also describe how an ef-
ficient hash database could be built to facilitate fast hash
matching. Moreover, we shall investigate the error anal-
yses, complexity, granularity, and scalability issues of the
proposed image hashing system.

The remainder of this paper is organized as follows. Sec. 2
discusses the difference between cryptographic hashing and
media hashing, and states the problems of media hashing
that needs to cope with. In Sec. 3, the proposed image hash-
ing system that is composed of mesh generation, mesh-based
hash generation, coarse-to-fine hash database construction,
and fast hash matching, will be described. Many issues of
media hashing including robustness, error analyses, com-
plexity, and scalability can be found in [5, 12]. Extensive
experimental results will be given in Sec. 4 to verify the
performance of our scheme. Finally, concluding remarks will
be drawn in Sec. 5.

2. PROBLEM STATEMENT

Media hashing is recognized as an alternative to several ap-
plications that are previously accomplished by digital wa-
termarking. Here, a scenario of copy detection and tracing
is given to outline how an image hashing approach could be
employed to management digital image contents. Given an
image owned by its creator, an image copy detection system
needs to find out whether illegally copies of the image ex-
ist on the Internet and if they exist, a list of suspect URLs
must be returned. This content searching strategy is ac-
complished by means of image hashing and the output of
the hashing system can offer owners the information about
the unauthorized uses of their precious media data.

Referring to the image space as shown in Fig. 1, let I denote
an image, and X denote the set of images that are modified
from I by means of content-preserving operations (e.g., fil-
tering, compression, geometric distortions and etc) and are
defined to be perceptually similar to I. We further use ) to
denote those images that are actually modified from I but
are hardly recognized to be originated from I. For example,
severe noise adding and severe cropping are two representa-
tive attacks that can generate the elements of ). In addition,
let us denote as Z a set, which contains all other images that
are irrelevant to I and its modified versions. Consequently,
{I}JUXUYU Z is a case that forms an entire image space.

Figure 1: The Image Space. I is an element in the
image space. X denotes the set of images modified
from I that are still perceptually similar to I. ) de-
notes the set of images modified from I that permits
to be unrecognizable. Z is the set of images that are
irrelevant to I.

In order to represent the condensed essence of an image for
perceptual similarity measurement, a hash function is usu-
ally employed. Conventionally, a cryptographic hash func-
tion, H¢, is used to map an image I as a short binary string,
H¢(I). One of the most important properties of crypto-
graphic hashing is collision-free, which means that it is hard
to find two different images that can be transferred to pro-
duce the same hashes. Let z € Z, and z and I are dis-
tinct. The collision-free property of cryptographic hashing
will yield H°(I) # H°(z). Furthermore, let z € X and cryp-
tographic hashing will yield H¢(I) # H°(z), too. This im-
plies that cryptographic hashing inherently produces totally
different hash sequences if media content has been modified.

However, this characteristic is too restricted to be suitable
for multimedia applications since multimedia content per-
mits acceptable distortions. As a result, it is necessary to de-
velop a media hashing function, H™, that can provide error-



resilience. The error-resilience of media hashing is defined as
follows. It is said that z (€ X) is successfully identified to be
modified from I if d(H™(I), H™(x)) < € holds, where d(-,-)
indicates a Hamming distance function. In other words,
if two images are perceptually similar, their corresponding
hashes need to be highly correlated. In addition, the de-
sired media hash function still needs to possess collision-free
property like cryptographic hashing except that the distance
measure is changed as d(H™ (I), H™(z)) > e. On the other
hand, it is insignificant about whether y (€ )) can be iden-
tified to be modified from I or not. It should be noted that
traditional cryptographic hash function is a special case of
media hash function in that its € is set to be 0. Overall, the
main theme of media hashing is to develop a robust hash
function that can identify perceptually similar media con-
tents and achieve collision-free. Relevant issues of media
hashing have been analyzed in [5].

3. PROPOSED APPROACH

The block diagrams of the proposed mesh-based image hash-
ing system and image query system are depicted in Fig.
2 and Fig. 3, respectively. Our image hashing method is
operated on normalized meshes such that the geometric-
resilience is not restricted to affine transformations [8, 19].
Previous approaches proposed via this paradigm were re-
ported in [5, 12] and promising capabilities of robustness
and discrimination were obtained. In this paper, we gen-
eralize our previous methods to provide more analyses of
hashing issues and more extensive set of verification results.
The major components of our proposed image hashing sys-
tem will be sequentially described in this section.
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Figure 2: Block diagram of the proposed mesh-

based image hashing system.

3.1 Robust Image Mesh Generation

Extraction of robust meshes plays an important role in our
method since it is a prerequisite in withstanding geometric
distortions. To generate meshes, the first step is to detect
salient points of an image. Among the ubiquitous feature
point extraction methods, Harris detector has been popu-
larly used. However, the original Harris detector is still not
robust enough to be used for our purposes. Thus, we propose
to improve its robustness by carrying out it in the lowest-
frequency subband of the discrete wavelet transform (DWT)
domain [12]. Our intention is to filter out noisy points before
salient point detection.

Once the feature point extraction process is finished, the De-
launay tessellation is exploited to decompose the image into
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Figure 3: Block diagram of the proposed image

query system: a query image (QI) enters into the
hash database for possible retrieval of its original
from the image database.

a set of disjointed triangles. Each triangle (called a mesh
hereafter) is regarded as the minimum unit for robust hash
extraction. The overall mesh generation process is summa-
rized as follows: (i) the original image I is discrete wavelet
transformed to obtain the lowest-frequency subband signal,
I.z; (ii) the set of feature points P are generated by means
of applying the Harris detector on Irr; and (iii) Delaunay
tessellation is performed using P to obtain a set, M, of
meshes (| M| is used to denote the number of meshes in M).

An example of mesh extraction is shown in Fig. 4, which
contains the generated meshes from the original Lenna and
its Stirmark attacked Lenna images. By visual inspection,
we can find that several meshes are consistently extracted.
Although we can see a few differences between the generated
meshes (e.g., top-right of Fig. 4(d) and top-left of Fig. 4(e)),
these differences are not certain to affect the hash-based
similarity measurement, as will be described in Sec. 3.4.
These results illustrate the effectiveness of mesh extraction
from the lowest-frequency subband of an image.

{a) original

(e) random bending

(d) shearing

{c) affine transform

Figure 4: Illustration of extracted meshes from orig-
inal and attacked Lenna images (Initially, they are
color.). Note that the meshes are detected at the
lowest-frequency subband of an image after two-
level wavelet decomposition.



3.2 Mesh Normalization

Once the set of meshes in an image has been produced, each
original mesh My (€ M) will be normalized as ME°™ to gen-
erate a mesh-based hash Hy, where M{°™ is a right-angled
isosceles triangle. The aim of normalization is to maintain
that all normalized hashes are of the same size and the ex-
tracted mesh-based hashes are of the same length to enable
mesh-based hash comparisons. Fig. 5 illustrates the rela-
tionship between My and Mg°™, where < A, B,C > and
< A,B,C > denote the corners of My and MJ°™, respec-
tively. In addition, let < A, B,C > be arranged to satisfy
/ZBAC > ZABC > LZACB, where ZBAC denotes an angle
centered at corner A. When the normalization process is
performed, < A, B,C > is first mapped to < A, B,C > se-
quentially. That is, this “angle order” must be maintained
to keep uniform warping in order not to affect the generation
of normalized meshes and their corresponding hashes. Here,
non-uniform warping implies that an original mesh and its
attacked mesh are normalized with different angle order and
thereby the resultant normalized meshes will produce differ-
ent hashes. After angle order-based corner mapping, My is
transformed into M°™ through the procedures of affine
transformation and interpolation.

(1
Cr

A

—_—

warping

B A'

Figure 5: The angle ordering between an original
mesh and its normalized mesh. The angle order-
ing is determined by sorting the three angles in a
descending order.

There are two major factors that will affect the angle order.
One is raise by severe geometric distortions that change the
order of three angles in a mesh. However, this factor will lead
to apparent destruction of visual quality in images, which
lose their commercial value. Therefore, we can ignore this
problem. The other one is resulted from the situation that
two or three angles are nearly the same in magnitude such
that even a slight distortion can change their order. This
problem is required to be dealt with since the visual quality
of an image is only imperceptibly modified. Our solution is
to generate two (if two angles are nearly the same) or six (if
three angles are nearly the same) different hashes for such
mesh by changing angle order subsequently with respect to
a query image. In addition, we still keep one mesh to have
one corresponding hash in the hash database to save space.

In our implementation, a normalized mesh is a right-angled
isosceles triangle with the length of both sides experimen-
tally verified to be 32 based on the following observations:
(i) if the side’s length is small enough, partial information
of an original mesh would be lost to not provide enough
discriminable features among different meshes; (ii) if the

side’s length is large enough, certain information of an orig-
inal mesh would be redundant to pose the time-consuming
problem in hash generation and comparison. As a whole,
the number, 32, is empirically selected to meet the trade-off
between the hash’s discrimination and the normalization’s
complexity.

3.3 Robust Mesh-based Hashing

Image hashing attempts to transfer an image content to a
feature sequence to represent its condensed essence. This
feature sequence is required to be short enough for fast
matching and meanwhile to preserve distinguishable fea-
tures for feasible similarity measurement. By taking the
above two conflicting factors into consideration, in this pa-
per, the robust hash of each normalized mesh Mg°™ is ex-
tracted in the block-DCT domain. In fact, the extracted
hash bits are position-dependent and belong to a kind of
local features.

First, each triangle ME°™ is flipped and padded with its
flipped version to form a 32 x 32 block. For each 32 x 32
block, it is divided into 64 4 x 4 blocks. Second, 4 x 4 DCT
transform is performed and the first AC coefficient (located
at the lowest frequency subband except for the DC term) of
each 4 x 4 block is selected. All the selected AC coefficients
form an AC sequence of length 64. It should be noted that
due to the effect of padding the upper triangular and the
lower triangular exactly capture different features. The DC
coefficients will not be selected because they are not helpful
in capturing identifiable features. Finally, this AC sequence
is sorted according to the magnitudes of its 64 elements and
the hash bits Hy(s)’s are assigned as follows:

1, if |[AC{(1)] belongs to the first 32
largest AC coeflicients (1)
0, otherwise

where Hy(+) is a hash bit in a binary hash sequence Hy and
ACE(1) (0 < s < 63) denotes the first AC coefficient in a
4 x 4 block s of a normalized mesh M;°™.

It is worthy mentioning that the hash bits determined by
Eq. (1) are image position-dependent (i.e., s). Unlike other
hashing methods that adopted global or statistical features,
the additional security measure should be used to avoid the
collision problem, i.e., two dissimilar images have the similar
hashes.

In Eq. (1), there is one hash bit generated from a 4 x 4
block. Besides, the mesh-based hash designed according to
Eq. (1) is to guarantee the number of 1’s and 0’s the same,
i.e., uniform distribution, to avoid any bias that will affect
hash matching. This uniform distribution of hash bits is
extremely indispensable to the requirement of collision-free
or false positive. We call this feature value Hy(-) robust
because this magnitude relationship obtained after sorting
can be approximately preserved.

Note that the number of meshes is equal to the number of
hashes in an image. |Hk| is used to denote the length of a
binary hash sequence Hy. In this paper, the hash dimen-
sionality, |Hx|, is fixed to be 64, as explained previously.
After mesh generation and mesh-based hash extraction, the



feature vector of an image I could be expressed as
I gl I
{HI;H2a"'7H|MI\}7 (2)

where | M| and Hi denote the number of meshes and k-th
hash sequence in image I, respectively.

3.4 Hash Database Creation and M esh-based
Fast Matching

In this section, we discuss how to create an image hash
database from which the mesh-based matching process is
performed when an incoming query is given. Our hash
database will be designed to be suitable for two-stage fast
search where the first stage is to produce potential candi-
dates through a coarse matching process and the second
stage is a full matching process used to identify the final win-
ner (if any) from the candidates. The overall image query
system is depicted in Fig. 3.

34.1 Smilarity Measurement

Since the objective of this paper is to provide high robust-
ness of an image hashing scheme against various attacks
(including geometric distortions), partial matching is con-
sidered in measuring similarity. In the applications of con-
tent copy detection and tracing, two images (Im and I)
are determined to be similar if there are at least N mesh-
pairs matched. Moreover, it is said that a pair of meshes
is matched if the bit error rate (BER) between their corre-
sponding hashes is smaller than a threshold T (0 < T < 1),
ie.,

_ H{HH () # Hi" (D)} <7

Im 13ln
BER(H;™ H;") ] <

(3
where H!™ (t) denotes the t-th element of the i-th hash in I,y
and f{} denotes the number of bit errors. The two thresh-
olds, T and N, are determined meaningfully to be related to
the false positive probability [5]. In addition, the so-called
valid or invalid retrieval in a large database based on the

image similarity measurement (Eq. (3)) will be described in
Sec. 3.4.5.

3.4.2 Full Matching

Let |M™| denote the number of meshes in an image Im.
Conventionally, the image hash database collects and stores
the hashes of all images. Under this circumstance, there will
be |M™=| x M| mesh pairs required to be compared in
order to determine whether two images, Im and I, are simi-
lar or not according to the similarity measurement described
in Sec. 3.4.1. However, we cannot rely on the exhaustive
matching process only. This is because when the database
is huge, the time consumed for the exhaustive hash match-
ing becomes tremendous such that this kind of search is not
suitable for many applications that need real-time process-
ing. We call this kind of matching process “full matching.”
Therefore, full matching will be constrained to be performed
on those candidates retrieved through a rapid coarse match-
ing process (to be described in Sec. 3.4.4). A coarse-to-fine
image hash database with error-robust capability for fast
search will be described in the next section.

3.4.3 Creationof Error-Resilient Tree-Sructured Im-
age Hash Database for Fast Search

In order to speed-up the matching process, we propose a fast
matching technique that comprises two stages: (i) “coarse
matching” for rapid selection of candidates; (ii) “full match-
ing” for determining the final target from the selected can-
didates. In fact, this technique looks like a coarse-to-fine
searching paradigm. The so-called coarse matching is mainly
used to coarsely find a set of candidates (usually, its size
is significantly smaller than the entire search space) that
may contain the desired target. Next, a full matching is
conducted on the set of candidates to find the final result
exhaustively. Therefore, our fast matching paradigm needs
to be cooperative with a hash database that is designed in
a sophisticated manner. This sophisticated hash database
is built, as shown in Fig. 6. The hash database comprises
“entries” and each entry links to a chain that contains the
indices of images. It is said that an image could be linked
to a specific entry if one hash of that image and the entry
are similar. In practice, each entry is the seed of a group.
It is also observed that a group associated with an entry
can proliferate rapidly if this entry is a common feature
among images. As a result, our method of building the hash
database for fast searching is a kind of clustering. How-
ever, unlike other clustering methods that are proposed for
content-based image retrieval, our clustering paradigm be-
longs to partial clustering instead of global clustering. That
is to say, an image can be linked into different entries as long
as its hashes are similar to more than one entries.

e - - -

exe, |-/ ~A -~
A

ERE,._U_«_ —'/ /"‘/ /
ERE,‘-‘—‘-*-‘]_'{_ / _'/ / _'/ /

Entries

Query Image

Image indices ™

Figure 6: Creation of an image hash database for
fast search in a coarse-to-fine manner. Our image
hash database includes (i) error-resilient entries; (ii)
image indices; and (iii) image hashes.

There are two issues that should be considered in construct-
ing the desired hash database, i.e., entries should (i) be short
enough for realizing practical implementation and (ii) pos-
sess error-robust capability to accommodate modifications
of meshes due to attacks. In order to take the above two
issues into account simultaneously, in this paper, each entry
is designed as a 16-bit long hash sequence and a coarse rep-
resentation of a mesh. This “coarse hash” that is similarly
generated from the one described in Sec. 3.3 is described
as follows. Now, each normalized mesh of size 32 x 32 is
downsampled into an 8 x 8 coarse block from which a coarse
hash, By, is extracted to indicate the approximate char-
acteristic of a mesh. Meanwhile, each mormalized mesh is
also partitioned into 16 8 x 8 blocks from which block-based
hashes, denoted as B,(b) (0 < b < 15), are extracted. With



the above setting, the coarse hash bits are designed as the
results obtained from comparing each B, (b) with Bgs. More
specifically, the coarse hash bit of a mesh is defined as

1,  if By(b) > Bu,

CH(b) = { 0, otherwise; (4)
where CH(b) is a hash bit in a coarse hash sequence CH.
As indicated in Eq. (4), each coarse hash is a 16-bit vector,
which implies that each entry is also composed of 16 bits
and there are in total 65536 entries. The entries are ex-
pressed as EREy, ERE:, ,... ERFE¢s535, where ERE; is a
binary representation of ¢. In our implementation, the size of
ERE;’s needs to be controllable so that they can be stored
into an array for rapid indexing. This corresponds to the
first issue. As for the issue of error resilience, it means that
even an image has been modified, its coarse hashes could
be largely unaffected. Since the proposed coarse block car-
ries low-frequency characteristic and the coarse hash bits are
designed as the magnitude relationship between two blocks,
both are stable and not easy to be changed. Readers can re-
fer to [10] for the robustness analyses. Consequently, coarse
matching is able to reliably select candidates that contain
the desired target.

The clustering associated with each entry is operated as fol-
lows. It is said that an image’s index id is linked to an entry
ERE; if at least one coarse hash CH of the image Iiq and
ERE; are the same, i.e.,

BER(CH, ERE;) = 0. (5)

Through the above process, the image hash database could
be built in an off-line manner. Basically, the built image
hash database is error-resilient and tree-structured, and per-
mits newcomers to join at any time.

3.4.4 Coarse Matching

For an incoming query image, QI, each of its mesh-based
hashes tries to enter the hash database through the entries.
It is said that the j-th coarse hash of QI, CHJQI7 is permit-

ted to enter the entry E; if CHJQI and E; satisfy Eq. (5).
Since the rationale behind our coarse matching method is to
rapidly select the candidates for advanced full matching, we
first design to exploit entries of the hash database to filter
out those targets in the image database that are identified to
be dissimilar to the incoming query. This goal is to reduce
the number of images that are required for full matching
and thereby the time-cost is saved.

In our coarse matching process, if a coarse hash of an incom-
ing query QI is permitted to enter into an entry E;, then
the hit indicators of all the image indices that are linked
to E; will be added by 1 to indicate the gradual increase
of the possibility that the images are potentially similar to
the query. Let us denote by d(id) as the hit indicator of an
image Iija. When all coarse hashes of QI have gone through
the above process, we retain those images (in the database)
that have the magnitude of their hit indicators larger enough
as candidates for full matching in order to determine the fi-
nal winner, i.e., the target with the best match. In fact, our
empirical observations indicate that the desired target could
be found from only a few candidates (e.g., smaller than 10).
Compared with million number of images in a database, this

choice of candidates has greatly reduced the time required
for searching. This also implies that most of the target im-
ages have been early obviated through coarse matching.

3.45 Validor Invalid Retrieval

In the proposed two-stage matching paradigm, a so-called
“valid retrieval” is defined as follows. Given a query image
(QI), a hash database, and an image database, it is said
that a best target image is effectively retrieved to match QI
if (i) there are candidates retrieved to satisfy Eq. (5) during
the coarse matching process (Sec. 3.4.4); (ii) the target
image is the candidate, together with QI, that have the
maximum number, N™%% of mesh pairs satisfying Eq. (3)
(Sec. 3.4.2) and N™** > N. Furthermore, the importance
of valid retrievals is determined according to their N™*®’s.
For example, top 1 valid retrieval means the one that have
the maximum N™** among all valid retrievals.

On the other hand, if N™%® is smaller than N, this search
is treated to be invalid. As a result, it is concluded that the
query image does not exist in the image database.

4. EXPERIMENTAL RESULTS

In this paper, several experiments were conducted to evalu-
ate the proposed mesh-based image hashing and query sys-
tem. In Secs. 4.1 and 4.2, the performance of copy detection
is demonstrated.

4.1 Robustness: Resistance to Miscellaneous
Attacks

First, ten color images with different contents (I1: Pepper,
I2: Lenna, I3: Bridge, I4: Sailboat, Is: Goldhill, Is: F16,
I7: Baboon, Is: Clock, Ig: Tank, and Iio: Splash) were
used to verify the robustness of our scheme against miscel-
laneous attacks. The standard benchmark, Stirmark, with
versions 3.1 and 4.0 quite fits our goal in simulating vari-
ous manipulations of digital images. Please refer to [17, 18]
for more detailed parameters of Stirmark. In this test, the
original image was used as a query to find out how many
modified versions could be successfully detected. The re-
sults of robustness verification are summarized in Tables 1
and 2, respectively. In the two tables, each attack’s name
is followed by a digit, which indicates the number of times
that the attack was performed with different parameters.
Besides, each field indicates the number of modified images
that have been successfully identified. Here, N = 3 and
T = 0.25, as explained in Sec. 3.4, were adopted. Accord-
ing to Tables 1 and 2, among 1910 modified images 1761 of
them could be correctly identified, which indicates that the
correct recognition rate is 92.2%.

Moreover, it can be observed that most modified images
could be successfully detected except for some exceptions.
Several attacked images that were failed to be identified are
shown in Fig. 7 for visual inspections. We can observe from
Fig. 7 that it is still not easy to correctly extract the meshes
from the attacked images involving remarkably degraded fi-
delities and content eliminations. In particular, severe crop-
ping and heavy noise adding are efficient in breaking the con-
nectivity of meshes and thereby affect the hashes to defeat
our system even the attacked images have lost their com-
mercial value. However, compared with the existing meth-



ods [2, 3, 4, 7, 8, 15, 19, 20], it is evident that our scheme
indeed achieves promising resistance to extensive geometric
distortions.

(b) rotated+cropped (€) corvolution filtered Splash (d) eropped Tank
Baboon

(a) noisy Lenna

Figure 7: Failed examples in the robustness test. (a)
and (c) are from Stirmark 4.0, and (b) and (d) are
from Stirmark 3.1.

4.2 Identification: Searchinginal argeDatabase

The second part of our experiments was related to a re-
trieval problem in a large image database. In this searching
system, the database is composed of the so-called original
color images (which is composed of the Corel image database
that contains 20000 images and ten traditional images such
as Lenna, Baboon, ..., etc.) while the query image is either
suspect in the sense that it may be a modified version gener-
ated from our database or totally irrelevant to the database.
We have used the attacked images, obtained from Stirmark
3.1 and 4.0, as queries of the database.

Two measures, recall rate and precision rate, were used to
evaluate the searching performance. They are dependent on
the three parameters (T, N, and n) and are, respectively,
defined as follows:

No. of queries satisfying Eq.(3)
No. of total queries

Recall(T,N,n) = , (6)

Precision(T, N, n) = No. of queries satisfying Eq.(3)
»7 7 No. of detections satisfying Eq.(3)’
(7

where n means the number of valide retrievals that may
include the desired target. Both the full matching and fast
matching procedures were exploited for searching and their
results were compared.

According to the process of full matching (described in Sec.
3.4.2), the co-called “successful search” needs to be defined
to evaluate the performance of searching. Here, successful
research means that at least one of the valid retrievals (de-
scribed in Sec. 3.4.5) contains the desired target. In this
paper, top n valid retrievals is adopted to check whether at
least one of them contains the desired target, where different
n’s include 1, 2, 5, 10, and 100, respectively. In addition,
we provide the information about the overall performance
in terms of both recall and precision rates, as depicted in
Table 3 2. As can be seen in Table 3, the overall searching

It should be noted that the traditional precision rate vs.
recall rate measurement used in content retrieval may not
be suitable in our media hashing. This is because we are
interested in identifying the right target instead of just sim-
ilar ones. As a result, increasing the number of detections
will dramatically decrease the precision rate.

results can only be significantly improved (up to =~ 90%) if
the number of valid retrievals is constrained to be within
5. This outcome demonstrates that the proposed searching
strategy is very efficient in finding the desired target with-
out relying on checking too many valid retrievals. Note that
the number of miss detections is slightly larger than that
obtained in the robustness test (as described in Sec. 4.1)
because the search space has been broadened. Basically,
these results reveal that the desired originals are hard to be
identified for those query images (e.g., Fig. 7) that have
been severely modified. Moreover, the miss detected queries
are mostly consistent with those of failed identification in
the robustness test.

In order to speed up search in a large database, the pro-
posed fast matching process (as described in Sec. 3.4) was
also employed. The time-cost can be greatly saved due to
entry entrance offers early elimination of those images that
are dissimilar to the query. The overall performance of fast
searching in terms of both recall and precision rates is de-
picted in Table 4. By comparing Table 4 and Table 3, we
find that the proposed fast searching strategy is efficient
while retaining comparable performance as full searching.

5. CONCLUSIONS

A robust mesh-based image hashing scheme has been pro-
posed in this paper for content management of digital im-
ages. Our scheme is mainly composed of two components in-
cluding (i) mesh-based robust hash generation and (ii) hash
database construction for error-resilient and fast searching.
In comparison with the existing methods, our major con-
tribution is to significantly improve the resistance of image
hashing to geometric distortions. Furthermore, we have in-
vestigated several media hashing issues including robustness
and discrimination, error analyses, complexity, granularity,
and scalability. We have also demonstrated the use of the
robust mesh-based image hashing system for both copy de-
tection and content authentication.

On the other hand, our scheme is somewhat complex in
that most time is consumed for mesh normalization. For-
tunately, the hash database used for query and searching
could be built in an off-line manner. As a result, the time
is mainly spent for the incoming query image. However, it
should be noted that this cost is compensated for the promis-
ing robustness against geometric distortions. Besides, a fast
matching process has been proposed to speeded up search
in a large image database. To understand the impact of dif-
ferent parameters on the false alarm rate, error analyses are
conducted to derive a guideline of determining the necessary
parameters.

Still, some directions that are worth of further researching
are identified as follows. First, robust identification of small
images is still a challenging problem because it is not robust
enough to extract mesh-based hashes from small regions.
Fortunately, precious images are usually with large sizes and
only attacked images can be of small sizes (may lose their
commercial value). Second, we will be devoted to study the
challenging problem of robust feature point extraction for
mesh generation. This problem is particularly crucial for
mesh-based image authentication. Finally, we will extend
the scope of our method to search and identify images in



the URLs.
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Table 1: Robustness of our scheme vs. Stirmark 3.1: attacks are denoted as SPA: Signal Processing Attack
including median filtering, Gaussian filtering, sharpening, and Frequency Mode Laplacian Removal (FMLR);
JPEG: compressed with quality factors ranging from 90% to 10%; GLGT: General Linear Geometric Trans-
form; CAR: Change of the Aspect Ratio; LR: Line Removal; RC: Rotation+Cropping; Scaling: scaled with
factors ranging from 0.5 to 2.0; RRS: Rotation+ReScaling; RB: Random Bending.

Stirmark 3.1 11 12 13 I4 15 IG I7 Is 19 110
SPA (6) 6 |6 |6 |6 |6 |6 |6 |6 |6 |6
JPEG (12) 12 (12 12 |12 | 12 |12 | 12 | 12 | 12 | 12
GLGT (3) 3 (3 (3 [3 3 |3 [3[3 |3 |3
CAR (8) 8 [8 |8 [8 |8 |8 |7 |8 |8 |3
LR (5) 5 5 5 5 5 |5 5 5 5 |5
Flipping (1) || 1 |1 |1 |1 |1 |1 |1 [T [1 |1
Cropping 9) || 8 |7 |7 |8 [8 |8 |4 |8 |3 |6
RC (16) 15|15 |15 | 15|14 |15 |12 | 15| 14 | 15
Scaling (6) 6 |6 |4 |6 |6 |6 |2 |6 |4 |4
RRS (16) 15 15|15 |16 | 15 | 16 | 10 | 16 | 12 | 14
Shearing (6) ||[6 |6 |6 |6 |6 |6 [6 |6 |6 |6
RB (1) 1 1 1 1 1 1 1 1 1 1

1

1

Table 2: Robustness of our scheme vs. Stirmark 4.0: attacks are denoted as AffineT: Affine Transformation;
ConvF: Convolution Filtering; Cropping: cropped into %, %,
factors ranging from 90% to 10%; MF: Median Filtering; Noise: noise adding; SS: Self-Similarities; Scaling:
scaled with factors ranging from 0.5 to 2.0; RML: Removing Lines; PSNR: all pixel values added with the
same quantity; Rotation: pure rotation;

and % sizes; JPEG: compressions with quality

RRS: Rotation+ReScaling; and RC: Rotation+Cropping.

Stirmark 4.0 Il 12 13 I4 I5 Iﬁ I7 Is Ig 110
AffineT (3) 8 [8 [8 [8 [8 |8 [8 [8 [8 [8
ConvF (2) 2 |2 [2 [2 |2 [2 |1 [2 |1 |1
Cropping (4) |2 |1 |1 |1 [2 [2 |0 [T |1 |2
JPEG (12) 12 112 |12 | 12 | 12 | 12 | 12 | 12 | 12 | 12
MF (4) 4 |14 |4 |4 |4 |4 |4 |4 |4 |4
Noise (6) T |1 [T |2 |1 |2 |1 [1 11
SS (3) 3 13 (3 [3[3[3 [3 3 [3[3
Scaling (6) 5 |6 |4 |6 |5 |6 |4 |6 |4 |6
RML (10) 10|10 {10 | 10| 10 | 10| 10 | 10 | 10 | 10
PSNR (11) 11 )11 (11 |11 |11 (11|11 |11 |11 ] 11
Rotation (16) || 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16
RRS (10) 10 |10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10
RC (10) 10 {10 { 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10

Table 3: Recall rate vs. Precision rate for full searching on Stirmark

Searching style

Full Searching

Query sources Stirmark 3.1 (890 queries) Stirmark 4.0 (1020 queries)

Top n matches 1 2 5 10 | 100 1 2 5 10 | 100
Recall rate (%) 82.1 | 86.5 | 90.7 | 93.3 | 94.5 || 84.4 | 87.1 | 89.4 | 90.4 | 91.2
Precision rate (%) || 82.1 | 43.3 | 181 | 9.3 | 09| 84.4| 435|179 | 9.0 | 0.9

Table 4: Recall rate vs. Precision rate for fast searching on Stirmark

Searching style

Fast Searching

Query sources Stirmark 3.1 (890 queries) Stirmark 4.0 (1020 queries)

Top n matches 1 2 5 10 | 100 1 2 5 10 | 100
Recall rate (%) 80.5 | 84.5 | 87.2 | 87.2 | 87.2 || 83.6 | 85.1 | 86.0 | 86.2 | 86.2
Precision rate (%) || 80.5 | 42.5 | 17.5 | 87| 09| 83.6 | 425 | 172 | 86 | 0.9




