
Robust Hash-based Image Watermarking with Resistance 
to Geometric Distortions and Watermark-Estimation 

Attack
Shih-Wei Sun 

Dept. of Electrical Engineering 
National Central University 

Chung-Li, Taiwan 320, ROC 
 swsun@iis.sinica.edu.tw

Chun-Shien Lu 
Institute of Information Science 

Academia Sinica 
Taipei, Taiwan 115, ROC 
lcs@iis.sinica.edu.tw 

Pao-Chi Chang 
Dept. of Electrical Engineering 

National Central University 
 Chung-Li, Taiwan 320, ROC 

pcchang@ce.ncu.edu.tw 
 

ABSTRACT 
Digital watermarking provides a feasible way for copyright 

protection of multimedia. The major disadvantage of the existing 
methods is their poor resistance to both extensive geometric 
distortions and watermark-estimation attack (WEA). In view of 
this fact, our goal of this paper is to propose a robust image 
watermarking scheme that can withstand geometric distortions 
and WEA. Our scheme is mainly composed of three components: 
(i) robust mesh generation and embedding for resisting geometric 
distortions; (ii) improvement of fidelity using modified Noise 
Visibility Function (NVF); and (iii) construction of hash-based 
content-dependent watermark (CDW) for resisting WEA. 
Experimental results obtained from standard benchmark confirm 
the robustness of our method. 

Keywords: Attack, Copyright protection, Embedding, Mesh, 
Hash, Robustness, Watermark 

1. INTRODUCTION 
Digital watermarking has been recognized as a helpful 

technology for applications of copyright protection, database 
retrieval, and authentication during the last decade.  No matter 
what kinds of applications are considered, robustness is the 
critical issue affecting the practicability of a watermarking 
system. In data hiding, robustness refers to the capability of 
resistance to attacks that are used to destroy or remove hidden 
watermarks. In [19], attacks are classified into four categories: (1) 
removal attacks; (2) geometric attacks; (3) cryptographic attacks; 
and (4) protocol attacks. Up to now, resistance to extensive 
geometric attacks is still a challenging issue. Geometric attacks 
introduce synchronization errors to disable watermark detection 
without needing to remove the hidden information. 

In the literature, the watermarking methods resistant to 
geometric attacks can be divided into three categories. The first 
category is to embed the watermark into the geometric invariant 
domain. In [7, 8], watermarking is conducted in the Fourier-
Mellin domain and exploits its affine invariance. However, 
Fourier-Mellin domain is inherently vulnerable to cropping and 
other local geometric distortions. 

The methods falling into the second category proposed to use 
template [9, 10] or insert periodic watermark pattern [11, 12] for 
the re-synchronization purpose. In [9, 10], templates were 
embedded in DFT domain to generate a shape of local peaks, 
which can be easily retrieved in the detection process for 

recovering geometric distortions. On the other hand, the local 
peaks are also easily extracted by the pirates in order to remove 
the templates [13]. In [11], the periodical structure of the 
watermark could be estimated from the autocorrelation function 
(ACF) to recover the imposed global transforms. However, the 
global watermark structure cannot deal with the local geometric 
distortions. In [12], the authors proposed to insert a periodic 
watermark pattern for the convenience of re-synchronization. The 
inserted periodic watermark was transformed as a lattice of peaks 
when ACF is applied in stego or geometrically attacked images. 
However, since the watermark is identical for every region, the 
collusion attack [3] can be used to efficiently estimate and 
remove the exacted watermarks. Although the synchronization 
problem is somewhat solved, the watermark information still 
cannot survive in collusion environments.3 

The third category is called “feature-based watermarking 
scheme.” The feature points detected in the original image are 
used to form local regions for embedding. At the detection end, 
the feature points are expected to be robustly distributed at the 
corresponding positions. Among the ubiquitous feature point 
extraction methods, Harris detector has been popularly used in 
the fields of pattern recognition and computer vision. However, 
we found Harris detector [14] is still not robust enough to be used 
in digital watermarking. This is because Harris detector is 
rotation-and scaling-sensitive. In [15], Mexican-Hat wavelet 
filtering was used for feature point extraction. The Mexican-Hat 
wavelet filtering was implemented in frequency domain using 
FFT. Although 1-D FFT is widely used in implementing 2-D FFT 
to improve the computation efficiency, this implementation may 
lead another severe problem. That is, the input coefficient of 1-D 
FFT is quite different from the rotated version such that the 
different 1-D FFT filter will lead to different output. This is 
mainly due to that asynchronization effect is propagated to the 
final result of Mexican-Hat wavelet filtering. In [16], scale-space 
theory was applied for feature point extraction in that feature 
points were determined by automatic scale selection together 
with local extrema detection. Although the idea of scale-space 
feature point detection maybe used to solve scaling attacks, this 
approach is exactly a kind of exhaustive search. In addition, 
robust feature extraction plays a key role in this category. 

In this paper, a novel robust mesh-based content-dependent 
image watermarking method is proposed. Our method belongs to 
the third category of geometric distortion resilient watermarking 
technologies. Because the first category is restricted to be affine 
invariant and the periodic patterns are easily removed in the 



second category, the third category seems to be the best choice 
for watermarking applications. However the stability of feature 
points plays a key role in the third category. In view of this fact, 
we propose to use the Gaussian kernel as the pre-processing filter 
to stabilize the feature points. The Gaussian kernel is a circular 
and symmetric filter, so all the neighboring information of a pixel 
can be equally involved in filtering. A Gaussian kernel of large 
size, which is the marginal concept of scale-space theory, is used 
in our system. It is mainly adopted to generate an approximate 
version of an image from which second-moment matrix together 
with Harris detector is applied to extract feature points robustly. 
In order to resist watermark-estimation attacks, image hash [5] is 
further extracted and combined with the hidden watermarks to 
generate the Content-Dependent Watermark (CDW) [3]. CDW is 
able to resist watermark estimation attack in that even though the 
pirates can estimate the watermarks from meshes, they still 
cannot be successfully colluded to generate more correct 
watermark and remove it.  

In addition to robustness, the transparency and false positive 
issues are also investigated. As to transparency, we improve 
original NVF [4] so that the embedded watermark energy is 
linearly proportional to image content’s statistical variances. We 
also investigate the false positive issue in determining the proper 
threshold used to indicate the presence/ absence of a watermark. 
Experiment results obtained from standard benchmark verify that 
our scheme outperforms conventional feature-based 
watermarking methods [14,15,16]. 

The remainder of this paper is organized as follows. In 
section 2, we describe three important issues, including robust 
feature extraction, content-dependent watermark, and modified 
NVF, that are fundamental for embedding. In section 3, the 
proposed mesh-based content-dependent watermarking is 
described. Experimental results are demonstrated in section 4 to 
verify the performance of our scheme. Robustness comparisons 
with other methods are also conducted. Finally, conclusions are 
given in section 5. 

2. ROBUST FEATURE EXTRACTION, 
CONTENT-DEPENDENT WATERMARK, 
and MODIFIED NVF 

Several key issues of robust watermarking will be described 
in this section. They include robust feature extraction and 
content-dependent watermark for achieving robustness, and 
improved NVF for satisfying transparency. 

2.1 Feature Extraction 
A feasible feature point extraction technique should 

approximately tolerate common filtering, compression, and 
geometric attacks. In our method, Gaussian kernel filtering and 
Harris detector with second moment matrix are integrated for 
feature point extraction. 

2.1.1 Gaussian Kernel Filtering 
The Gaussian kernel filtering is a special case of scale-space 

filtering. In scale-space filtering, an image is filtered by more 
than one filter of different sizes to generate multiple frequency 
components. In some applications, filter size can be modified to 
adapt different affine transformation environments. But in digital 
watermarking, for the purpose of blind detection, we only select a 

specific filter size to generate one level of scale-space, which is 
convenient for watermark embedding and detection. In the 
following, Gaussian kernel filtering is described. 
Let )(xI  be a cover image and let Gaussian kernel be defined as 
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The convolution of the Gaussian kernel and the cover image is 
defined as 
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Because the Gaussian kernel is a circular shape, the resultant 
filtering response is rotation insensitive. This property inspires us 
to adopt it in our geometric-distortion resilient scheme. Here, the 
Gaussian kernel used here is the uniform scale-space kernel.  

2.1.2 Harris Detector with Second Moment Matrix 
Based on the filtering response obtained in 2.1.1, the local 

features invariant to affine transforms must be detected. Because 
linear derivatives are suitable for modeling the human visual 
front-end [1], the weighted difference computed by convolving 
the original signal with a derivative of the Gaussian difference 
operator are adopted in this paper. Based on the principle of 
Gaussian kernel, we have 
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The Gaussian derivative is generally expressed as: 
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where m  is the derivative order, and yx,  are the Cartesian 
coordinate in the image. Therefore, we can derive, 
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This operation is efficient for implementing the convolution of 
Gaussian kernel with an image. Next the derivatives obtained 
from Eq. (1) form the so-called auto-correlation matrix which is 
defined as: 
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The second moment matrix describes the gradient distribution of 
the local neighborhood of a point. The gradients are determined 
by Iσ  (integration scale) and Dσ  (derivation scale). In Eq. (2), 

),( Dxy xL σ  describes the second derivative along the y direction 

and the x  direction sequentially. In addition, the derivatives are 
smoothed using a Gaussian window of size .Iσ  

Basically, it is possible to compute the matrix for all possible 
combinations of kernel parameters. To making the system 
tractable, both derivation and integration are restricted to be 

DI sσσ = . The parameter s  can be experimentally determined. 



Finally, Harris detector [2], widely used in salient point 
detection, is applied to detect the salient points. As to second 
moment matrix, ),,( DIx σσµ  is closely related to the local auto-
correlation function. Let α and β  be the eigenvalues of 

).,,( DIx σσµ  They will be proportional to the principal 
curvatures of the local auto-correlation function and form a 
rotationally invariant description of ).,,( DIx σσµ  In [2], if both 
curvatures are high, such that the local auto-correlation function 
is sharply peaked, then µ  will be increased when shifts occur to 
indicate the existence of a salient point. In order to avoid 
calculating the explicit eigenvalues of µ , )(µTr  and 

)det(µ can be determined alternatively as: 

2211)( µµβαµ +=+=Tr  

,)det( 21122211 µµµµαβµ ⋅−⋅==    

).()det(),,( 2 µµσσ TrkxH DI ⋅−=  

Feature point extraction is achieved by selecting the local 
maximum of ),,,( DIxH σσ  which is defined as 

),(),,(),,( xNBxxHxH wDIwDI ∈∀>   σσσσ  

where )(xNB denotes the neighborhood of a pixel .x  

2.2 Content-Dependent Watermark 
Some researches [12, 14, 15, 16] proposed to insert multiple 

redundant watermarks into an image with the hope that it suffices 
to maintain robustness as long as at least one watermark exists. 
The common framework is that some kinds of image units such 
as blocks [12], meshes [14], or disks [15, 16] were extracted as 
carriers for embedding. With this unique characteristic, we 
propose to treat each image unit in an image like a frame in a 
video; in this way, collusion attacks can be equally applied to 
those image watermarking methods that employ a multiple 
redundant watermark embedding strategy. Therefore, once the 
hidden watermarks are successfully removed by means of a 
collusion attack, the function of robustness disappears so that the 
false negative problem occurs. Of particular interest is the 
possible quality improvement of attacked media data by means of 
collusion attack. In addition, copy attack is also efficient in 
defeating a watermarking system by creating ambiguity problem. 
Since the common operation of realizing both the collusion and 
copy attacks is watermark estimation, they are called watermark-
estimation attack (WEA) [3]. 

In order to withstand watermark-estimation attack, we 
propose to embed content-dependent watermark (CDW) [3], 
which is composed of a watermark and a hash. Since this paper 
investigates a mesh-based watermarking scheme, the mesh-based 
hash [5] is considered here.For each mesh, its robust hash is 
extracted in the 8x8 block-DCT domain [5]. First, each 
normalized mesh is flipped and padded with its flipped version to 
form a 3232×  block. For a pair of 8x8 blocks, a hash bit, 
defined as the magnitude relationship between two AC 
coefficients, is represented as 
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where ( )⋅iMH  is a hash bit in a hash sequence iMH , and 

)( 1pfk  and )( 2pfl  are two AC coefficients at positions 1p  and 

2p  in 88×  blocks k  and l , respectively. 

Given a pair of a hash iMH  and a watermark W , iCDW  can be 
generated as 

( ),ii MHWSCDW ,=  

where ( )⋅S  is a mixing function, which is basically application-
dependent and will be used to control the combination of W and 

iMH . The sequence iCDW is the watermark that we want to 
embed in each mesh. 

2.3 Modified NVF Embedding 
In order to maintain transparency after watermarking, Noise 

Visibility Function (NVF) [4], which is an image-dependent 
visual model, is adopted in this paper. However, we find a defect 
in NVF that makes it not really transparent for smoothing regions 
of images. In this section, we provide a modification for NVF. 
According to [4], NVF function was derived as 
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where θ  is a tuning parameter that is calculated from every 
particular image and is defined as  

,2
maxσ

θ D
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where 2
maxσ  is the maximum local variance for a given image. In 

addition, ]100,50[∈D  is experimentally determined. Based on 
NVF, the content adaptive watermark embedding in [4] was 
designed as 
 SnNVFxy ⋅⋅−+= )1(  (3)

and 

,)1( 1SnNVFSnNVFxy ⋅⋅+⋅⋅−+=  (4)

respectively, where S and 1S  denote watermark strength. Eq. (14) 
is used to embed watermarks only in non-flat areas while Eq. (15) 
is used to embed watermarks both in the flat and non-flat areas. 

However, we find that Eqs. (3) and (4) represent two extreme 
cases, as shown in Fig. 1. In order to satisfy transparency 
gracefully, we modify NVF and design as 

.)1()1( 1SNVFnNVFSnNVFxy ⋅−⋅⋅+⋅⋅−+= (5)

The third term of Eq. (5) can be used to modify larger 
coefficients in highly textured areas and modify smaller 
coefficients in flat areas simultaneously so that the trade-off 
between transparency and robustness can be achieved gracefully. 
The comparison between the modified NVF and the conventional 
NVF is depicted in Fig. 1. It is observed that (i) for Eq. (3), no 
matter how complex or smooth the image content is, the third 
term is always zero such that watermark cannot be detected from 
flat areas; (ii) Eq. (4) will lead to severe quality degradation in 
smooth areas; and (iii) the modified NFV improves (i) and (ii) 
significantly.  



 

 
Fig. 1 Comparison between improved NVF and original NVF. 
 

3. PROPOSED METHOD 
Basically, the proposed method is similar to the mesh-based 

watermarking framework [14]. The major difference is that we 
have investigated some important issues (described in Section 2) 
to further improve the overall performance. In the main body of 
watermarking embedding and detection, our mesh warping is also 
different from [14] in that the false positive problem is taken into 
consideration. In the following, the watermark embedding and 
extraction processes will be described as follows. 

3.1 Watermark Embedding 
The watermark embedding process is outlined in Fig. 2. The 

content-dependent watermark [3] is embedded into each basic 
embedding unit, i.e., mesh, to combat watermark-estimation 
attack. Our embedding algorithm is described step by step in the 
following. 
1) The cover image I is used to detect the feature points for 
decomposing into meshes. Let the set of feature points be 

{ } . 1
2

Nii RpP =∈=  

2) The Delaunay tessellation is performed using P  to generate a 
set of meshes, { } NiiTT ,...,2,1== . 

3) The set of mesh-based robust media hash, 
{ } NiiMHMH ,...,2,1, ==  is extracted from T . In our proposed 

method, the size of hash bits is 64 [4]. 

4) Generate the image watermark W according a secrete key .k  

5) Each mesh-based hash iMH  and the watermark W are 
combined to generate the content-dependent watermark, i.e., 

{ }
WMHCDW

CDWCDW

ii

i

⋅=
= , .Ni ≤≤0  

Although there is only one watermark W embedded for a cover 
image, the principle of CDW would lead to different embedded 
signals for different meshes. Therefore, the collusion attack will 
fail to estimate the watermarks from meshes and then collude 
them to obtain the exacted watermark .W  

6) During embedding, the iCDW  should be repeatedly embedded 
into a mesh, in order to accommodate possible shifts of feature 

points caused by attacks. Here, each iCDW  is repeated kt times 

(in our test, 8=kt ) and denotes as 
iRCDW  before embedding. 

By considering the trade-off between robustness and transparency, 
we propose to shuffle the repeated watermark into a noisy form 
by multiplying the pseudo noise tripn _ . The resultant 
embedded signal is defined as 

 ,_
ii RT CDWtripnW ⋅=  

where 
iTW  is a right triangle of size 3232× . 

7) Affine transform is performed to transform 
iTW  into the mesh 

shape of iT to form 
iAW . 

8)  The modified NVF of iT  is calculated based on (5) as 
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9) 
iAW  is embedded into the mesh iT through the following 

embedding rule:  

( ),,
iii Aiwiw WTMNVFTT +=  

where 
iwT  is the watermarked mesh. Finally, all the watermarked 

meshes 
iwT ’s are generated and a stego image is produced. 

3.2 Watermark Extraction 
The watermark extraction process is depicted in Fig. 3. 

Basically, the watermark extraction process is the inverse process 
of watermark embedding. The watermark extraction process is 
described step by step in the following. 
1) For a suspect image, the set of feature points, P , is generated 
and then the set of meshes, T , is generated for watermark 
extraction. In addition, the hash, ,iMH  of each mesh is 
calculated. The original watermark W is generated based on a 
secret key k  that is only known to owners. By integrating 

iMH and ,W  the content-dependent watermark iCDW can be 

produced. By repeating iCDW  kt  times and shuffling the 
repeated result with the pseudo noise tripn _ , the right-triangle 
watermark 

iTW  is made. An affine transformed watermark 
iAW  is 

found by transferring 
iTW  according to the shape of iT . So far, 

the watermark 
iAW  and the corresponding watermark positions in 

iT  are ready to extract the hidden watermark. 

2) The popular MAP/ML estimator, Wiener filtering, is used to 
blindly extract the hidden signal. Wiener filtering is considered to 
be an efficient way [6] because watermark is usually a high-
frequency signal. 

3) The affine transformed watermark 
iAW  is used for locating the 

position of watermark determined in ,iT . In addition, affine 

pseudo-noise 
iAtripn _  is used to separate the Wiener predicted 

signals iT̂  from the noisy signal 
iAtripn _ . 
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Fig. 2 The proposed watermark embedding process. 

 
4) Each bit of the extracted watermark 

iDCDW  is decided by a 

majority selection rule according to the repetition factor kt . If 
the number of ones is larger than 2/kt , the watermark bit is 
determined as one. If the number of zeros is smaller than 2/kt , 
the watermark bit is decided as zero. Otherwise, the watermark 
bit is given by means of random guess. 

5) The extracted watermark 
iDW  after eliminating the hash 

information is generated as 

  ,
ii DiD CDWMHW ⋅=  

6) The Bit-Error Rate ( iBER ) between W and 
iDW is calculated 

for each mesh. If iBER  is smaller than Th , it is said that a 
watermark exists in a mesh. In addition, if there are at least λ  
meshes detected to contain watermarks, the suspected image is 
determined to be a watermarked one. 

iAtripn _
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Fig. 3 The proposed watermark extraction process. 

3.3 False Positive Analysis 
It is meaningful to claim the robustness of watermarking 

system only when the false positive is taken into consideration in 
measuring robustness. Under a sufficiently small false positive 



and with Th=0.375 (note that Th can also be used as a variable 
for analyses), the number λ  of meshes that are required to 
contain a watermark in order that a suspect can be determined to 
be a watermarked one can be derived as follows. Recall that the 
watermark size is 64 bits. It is said that two random signals (one 
from the original watermark and the other from the extracted 
signal) are similar if their bit error rate is smaller than or equal to 
th. 

More specifically, the probability, mp , of finding a pair of 
signals that satisfy a BER equal to th  can be expressed as 
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where 32
bC  denotes the number of possible cases where 2b bits are 

found to be different between two compared signal. Based on the 
above equation and a given value of λ , the false positive 
probability, fpp , is defined as 
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where n
m

nT
m

T
n ppC −− )1(   with λ>n  is sufficiently smaller 

than λλ
λ m

T
m

T ppC −− )1( , and λ−− ||)1( T
mp  is approximately 

1because T , denoting the number meshes in an image, is not 

large enough for λ−− T
mp )1(  to be small. It is obvious from Eq. 

(7) that fpp  is lower bounded by λ
λ m
T pC . Let 6=λ , 

9100.4 −×≈fpp , which is sufficiently small, could be obtained. 

In this paper, Th=0.375 and 6=λ  are adopted for watermark 
detection. 
 

4. EXPERIMENTAL RESULTS 
The robustness of the proposed scheme is verified using 

standard benchmark, Stirmark 3.1 [17, 18]. Three standard 
images, Baboon, Lena, and Pepper, are used as cover images. 
After mesh-based watermark embedding, the PSNR values 
between the cover image and its stego image for Baboon, Lena, 
and Pepper are 35.31dB, 38.61dB, and 38.29dB, respectively. No 
perceptual difference could be sensed. Although the PSNR of 
stego Baboon is smaller than 36dB, it is still hard to find any 
quality degradation because the Baboon image is rather noisy. 

The robustness test results are summarized in Table 1. In this 
table, each attack’s name is followed by a digit, which indicates 
the number of times that the attack was performed with different 
parameters. In addition, each field shows the numbers of attacked 
images that are successfully identified as the watermarked ones. 
The detection thresholds were set as Th=0.375 and 6=λ , as 
described in Sec. 3.3. We can observe that most of attacked 
images could be successfully detected except for few exceptions. 
These mostly include severe cropping attacks that break the 

connectivity of meshes and severe scaling attacks that make the 
feature points disappear. 

 

Table 1 

Robustness of our scheme vs. Stirmark 3.1: attacks are denoted as 
SPA: Signal Processing Attack including median filtering, Gaussian 

filtering, sharpening, and Frequency Mode Laplacian Removal 
(FMLR); JPEG: compression with quality factors, 90%~10%,; 

GLGT: General Linear Geometric Transform; CR: Color Reduce; 
CAR: Change of the Aspect Ratio: LR: Line Removal; RC: 

Rotation+Cropping; Scaling: with factors ranging from 0.5 to 2.0; 
RRS: Rotation+ReScaling; RB: Random Bending. 

 Baboon Lena Pepper 

SPA (6) 6 6 6 

JPEG (12) 12 12 12 

GLGT (3) 3 3 3 

CR(1) 1 1 1 

Flipping (1) 1 1 0 

CAR (8) 6 8 8 

LR (5) 5 5 5 

Cropping (9) 7 8 8 

RC (16) 16 15 14 

Scaling (6) 4 5 4 

RRS (16) 13 15 15 

Shearing (6) 6 6 6 

RB(1) 1 1 1 

 

In order to demonstrate the superiority of our method, we 
made comparisons with other feature-based watermarking 
methods [14,15,16]. Robustness is meaningful only if false 
positive is taken into consideration. In [15], if the numerator 
value is detected to be larger than zero, then the suspect image is 
declared to be watermarked one. In [16], if at least one disk is 
detected to contain a watermark, the suspect image is declared to 
be a watermarked one. Although false positive analyses were 
conducted in [14,15,16], their results did not include this factor. 
In our method, a suspect image is detected to be truly 
watermarked based on the false positive analysis if at least six 
meshes are detected to contain a watermark with BER smaller 
than or equal to th. 

Due to the limit of space, the comparisons are reported briefly 
as follows. Basically, our method can survive all non-geometric 
attacks of Stirmark 3.1, but the others [14,15,16] cannot. In 
particular, they cannot resist compression with higher ratios. For 
example, they can only tolerate JPEG compression with quality 
factor up to 30%. However, our method can resist JPEG with the 
lowest quality provided by Stirmark 3.1. 

As to comparisons of resistance to geometric distortions, the 
results are shown in Table 2. In Table 2, the label of Mesh means 
“number of detected mesh/ number of total mesh.” Yes/No means 
the presence/absence of a watermark. Besides, if the detection 
results obtained by our method in Table 2 are empty, this implies 
the parameters of attacks are not provided in Stirmark 3.1. It can 
be observed that all the line removal attacks are successfully 



detected in our method and in [16]. Our method can detect the 
watermark from cropped Lena and cropped Pepper up to cropping 
factor 50%. Our method also survives general linear-geometric 
transform and change of aspect ratio very well. The reason we 
find is that our mesh detection is robust than disk detection 
[15,16]. The attack of rotation plus cropping was only tested up 
to 5 ﾟ in [15]. When the attack was with large rotation angle (say 
up to  45 ﾟ), the method [16] could survive. However, ours can 
only detect few. The main reason is that even there are mesh-
watermarks detected in Lena and Pepper, robustness is satisfied 
by taking false positive into account. In Rotation+ReScaling 
attacks, our system can survive up to 45 ﾟ except for the case of 
Baboon rotated with 45 ﾟ.  For scaling attacks, our method works 
well for scaling factors larger than 1. When the scaling factor is 
significantly smaller than 1, it is still a challenging problem for 
the feature-based watermarking methods. For shearing up to x-
5%, y-5%, only our method can successfully extract the hidden 
watermarks. 

Resistance of our method to watermark-estimation attacks is 
similar [3]. However, the content-independent watermarking 
methods [14,15,16] cannot survive WEA. In sum, extensive 
experiment results verify that our method outperforms all the 
other feature-based watermarking methods. 

Table 2 

Our scheme vs. [14,15,16] for robustness comparisons with Stirmark 
3.1.  The attacks are briefly described as follows. LR: Line Removal, 
column and row; Crop: Cropping with percentage; GLGT: General 

Linear Geometric Transform: parameter: (1.013, 0.008, 0.011, 1.008); 
CAR: Change of the Aspect Ratio: parameter (1.00, 1.20); RC: 

Rotation+Cropping with degree; Scaling: with factors ranging from 
0.5 to 2.0; RRS: Rotation+ReScaling with degree; Shearing: not 
specific in Stirmark 3.1; Shearing 5: x-5% y-5%; RB: Random 

Bending. 

Table 2.1 Geometric attacks for Baboon 

Proposed method 
Attacks 

Mesh Yes/No 
 [16]  [15]  [14] 

LR: 5 ,1 50/213 Yes  6/11  

LR: 17, 5 28/205 Yes 1, 2, 2 3/11  

Crop 10% 27/172 Yes  2/11  

Crop 25% 14/114 Yes 1, 2, 2   

Crop 50% 4/36 No    

GLGT 30/226 Yes 0, 3, 3 5/11  

CAR 10/253 Yes    

RC 5.00 20/188 Yes  0/11  

RC 10.00 20/164 Yes   OK 

RC 20.00   1, 3, 3   

RC 45.00 6/104 Yes 1, 1, 1   

RRS 1.00 24/218 Yes  4/11  

RRS 30.00 6/215 Yes    

RRS 45.00 4/234 No    

SC 80%     defeat 

SC 90% 4/170 No 2, 3, 4   

SC 150% 19/532 Yes    

SC 200% 32/1109 Yes    

Shearing     OK 

Shearing 5 12/207 Yes 0, 0, 0 0/11  

RB 23/203 Yes 0, 2, 3   

 

Table 2.2 Geometric attacks for Lena 

Proposed method 
Attacks 

Mesh Yes/No 
 [16]  [15]  [14] 

LR: 5 ,1 69/208 Yes  3/8  

LR: 17, 5 35/199 Yes 5, 6, 6 0/8  

Crop 10% 33/166 Yes  2/8  

Crop 25% 22/118 Yes 4, 4, 4   

Crop 50% 8/54 Yes    

GLGT 47/211 Yes 7, 7, 7 4/8  

CAR 18/237 Yes    

RC 5.00 21/177 Yes  0/8  

RC 10.00 8/158 Yes   OK 

RC 20.00   5, 5, 5   

RC 45.00 4/96 No 2, 2, 3   

RRS 1.00 24/205 Yes  0/8  

RRS 30.00 8/197 Yes    

RRS 45.00 9/201 Yes    

SC 80%     OK 

SC 90% 6/170 Yes 4, 5, 5   

SC 150% 17/493 Yes    

SC 200% 27/860 Yes    

Shearing     OK 

Shearing 5 15/182 Yes 1, 1, 1 1/8  

RB 26/212 Yes 4, 5, 5   

 

Table 2.3 Geometric attacks for Pepper 

Proposed method 
Attacks 

Mesh Yes/No 
 [16]  [15]  [14] 

LR: 5 ,1 75/210 Yes  3/4  

LR: 17, 5 43/201 Yes 5, 5, 5 1/4  

Crop 10% 43/171 Yes  2/4  

Crop 25% 27/129 Yes 2, 2, 2   

Crop 50% 6/50 Yes    



GLGT 63/223 Yes 5, 5, 5 0/4  

CAR 8/244 Yes    

RC 5.00 28/177 Yes  0/4  

RC 10.00 22/157 Yes   OK 

RC 20.00   3, 4, 4   

RC 45.00 5/112 No 1, 1, 1   

RRS 1.00 49/209 Yes  2/4  

RRS 30.00 6/194 Yes    

RRS 45.00 12/201 Yes    

SC 80%     OK 

SC 90% 10/175 Yes 6, 6, 6   

SC 150% 12/455 Yes    

SC 200% 27/801 Yes    

Shearing     OK 

Shearing 5 26/199 Yes 0, 1, 1 0/4  

RB 41/212 Yes 3, 3, 3   

 

5. CONCLUSIONS 
A mesh-based content-dependent image watermarking 

method that can resist extensive geometric attacks and watermark 
estimation attacks is proposed. The major contribution of our 
method is threefold. First, traditional NVF function that is 
commonly adopted to satisfy transparency is modified to further 
improve transparency for various images. Second, a robust mesh 
extraction is proposed to enhance the feasibility of feature-based 
watermarking methods. Third, content-dependent watermark that 
is composed of a watermarking and a hash is proposed to resist 
watermarking-estimation attack. Standard benchmark has verified 
the robustness of the proposed scheme. 

However, the major weakness of our scheme is its high 
complexity. Most of time is spent in the mesh warping operation. 
As a result, our system at its current status is not suitable for real-
time applications. This problem can be properly dealt with, if our 
system is integrated with grid computing.  
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