
Building a Semantic-Web Portal Using Frame-based System ∗

Ching-Long Yeh, Jia-Yang Chen and Chih-Hsien Lin
Department of Computer Science and Engineering

Tatung University
40 Chungshan N. Rd. 3rd Sec.

Taipei, 104, Taiwan
chingyeh@cse.ttu.edu.tw

Abstract

In this paper we report employing frame-based
system as the basis to build up a ontology-based
portal. The basic idea is to transform the ontol-
ogy schema and instances collected from various
digital library sites using the semantics of the
frame-based system. The service programs writ-
ten using the frame-based reasoning formalism
thus can make use the knowledge.

1 Introduction

A digital library portal provides services based
on an integrated view for user to access con-
tents from various digital library sites [24, 14].
A semantic web portal is an appropriate tool to
build up the integrated service layer for digital
libraries [15][30]. The kernel of a typical seman-
tic web portal consists of a repository of facts
created based on the schema of ontologies and
an inference engine [5]. In front of the por-
tal are various service programs, including dis-

∗This research was supported by the Taiwan National
Science Council under Contract No. NSC92-2422-H-036-
322

covery, tailoring and social interaction, imple-
mented based on the inference engine. In the
other end are content provision interfaces that
collect content from various sources. In a pre-
vious work [30] we have designed such a portal
that provides a seamless interface for user to ac-
cess the services provides by various digital li-
braries. Frame-based representation is a natural
choice to carry out work of Semantic Web [20].
In this paper, we describe an implementation of
the portal using a frame-based system, flex [27].

The inference engine of flex is based on the
logic programming system, Prolog [7], and sup-
ports frame representation. Furthermore, it sup-
ports forward and backward chaining inferences,
which enables us to develop programs at con-
ceptual level. Using Flex, we can access persis-
tent databases using standard database connec-
tion interfaces. In addition to local GUI, it has
utilities to make programs interact with outside
world, such as the connection with web server,
TCP/IP and agent libraries.

The content provision component of the por-
tal we design collects contents in RDF format
from various digital library sites. The RDF doc-
uments are then converted into instances of flex

1

representation and stored in the appropriate lo-
cations in the repository. The repository is a
directory structure on the basis of the schema
of ontology. The service programs in the front
end are written using the forward and backward
chaining representation.

In the next section, we describe the compo-
nents of the portal architecture. In Section 3, we
describe the conversion of RDF to the language
of flex. In Section 4, we show the implementa-
tion result. Finally conclusions are made.

2 System Description

In this section, we first give an overview of the
architecture and then describe the frame repre-
sentation we use to implement the portal.

2.1 Overview of System Architecture

The architecture of the ontology-based portal is
summarized as shown in Figure 1. The central
part of the portal is a knowledge base consist-
ing of ontology and knowledge warehouse. The
information provision component consists pro-
grams for annotation and metadata wrapping.
In the front end, the discovery, use, tailoring
and social interaction functions are implemented
based on an inference engine.

The inference engine of flex interprets its
own representation language, Knowledge System
Language (KSL). Thus we need a translation
mechanism to represent both the ontology and
knowledge warehouse in Figure 1 using the se-
mantics of KSL. The resulting representations
are then stored in their respective repositories
as illustrated in Figure 2. The translation mech-
anism and the repository organization are de-
scribed in Section ??. The service programs, for

Web
server

Web
server

Web
server

Web
server

Content providers

User User User User

Ontology
Knowledge
warehouse

Portal

Annotator Wrapper

Discovery Use TailoringSocial

Inference engine

Figure 1: A high-level view of the components
of the ontology-based portal.

example, conceptual search and semantic nav-
igation, are written based on the forward and
backward chaining mechanism. In the remain-
der of this section we give an introduction to the
frame representation and inference rules in flex.

2.2 Frame-Based Reasoning in flex

flex supports frame-based reasoning with inher-
itance, rule-based programming and datadriven
procedures fully integrated within a logic pro-
gramming environment, and contains its own
English-like Knowledge Specification Language
(KSL) [27].

A frame is a complex a data structure that
is used to model the objects in the real world.
Each frame has its own name, its parent frame
names, a number of attributes and the respective
default values. For example, the frame feline

Ontology
(RDFS, DAML)

Knowledge
warehouse

(RDF)

Protege-2000

Translator
(RDF to instances

in ksl)

Facts-in-ksl
repository

Annotator

Schema-in-ksl
repository

Translator
(Ontology to
frame in ksl)

User

Conceptual
search

Semantic
navigation

flex inference engine

Figure 2: The kernel of the ontology-based por-
tal.

in Figure 3, inherits the attributes from both of
its parent frames, mammal and carnivore. Two
instances, sylvester and sammy are defined to
have the default attributes and values of cat. In-
stead of inheriting default values, an instance
can have its specific values ovrerriding the ones
from its ancestors. The inheritance relationship
of frame and instance thus forms a class hierar-
chy. The inference engine then operates based on
such a hierarchy of the domain. Individual frame
or group of frames can be attached procedures to con-
trol the consistency of data and knowledge when re-
quests are made to update, access, or create an in-
stance or slot to which they are attached. For exam-
ple, the frame employee in Figure 4 is attached with a
launch procedure, new employee. When an instance
of new male employee is created an action is per-
formed to collect the personal details. In addition to
control the creation of new instance, a procedure can
be attached to individual slot and is activated when
accessing or updating the the values of the slot. The

frame feline is a mammal, carnivore
default legs are 4.

frame cat is a feline
default habitat is house and
default meal is kit_e_kat.

instance sylvester is a kind of cat.
instance sammy is an instance of cat.

Figure 3: A example of frames and instance in
flex.

frame employee
default sex is male .

launch new_employee
when Person is a new employee
and sex of Person is male
then male_enrolment_questions(Person) .

instance dave is an employee .

Figure 4: Example of attached procedure in flex.

frame and instance representations in flex are used to
encode the classes and instances in RDF, as is clari-
fied in Section 3.

Production rules in if-then format are used to
specify the forward chaining rules for data-driven pro-
gramming. Also backward chaining rule that expands
current goal into a list of sub-goals is effective in goal-
driven programming. Both types of reasoning are
used to implement the control parts of the services
programs as is described in Section 4. The questions
and answers mechanism of flex along with the web
interface package are used to build browser-based in-
terface.

3 Transformation of Ontology
into Frame Representation

As shown in Figure 2, the ontology and RDF in-
stances collected from content sources must be con-
verted into the representation in order to be inter-
preted by flex inference engine. In this section, we

<rdf:RDF>

<rdfs:Class rdf:about="&person;AcademicStaff">

<rdfs:subClassOf rdf:resource="&person;Employee"/>

</rdfs:Class>

<rdfs:Class rdf:about="&person;AdministrativeStaff">

<rdfs:subClassOf rdf:resource="&person;Employee"/>

</rdfs:Class>

<rdfs:Class rdf:about="&person;Employee">

<rdfs:subClassOf rdf:resource="&rdfs;Resource"/>

</rdfs:Class>

<rdfs:Class rdf:about="&person;Lecturer">

<rdfs:subClassOf rdf:resource="&person;AcademicStaff"/>

</rdfs:Class>

<rdfs:Class rdf:about="&person;Researcher">

<rdfs:subClassOf rdf:resource="&person;AcademicStaff"/>

</rdfs:Class>

<rdfs:Class rdf:about="&person;Secretary">

<rdfs:subClassOf rdf:resource="&person;AdministrativeStaff"/>

</rdfs:Class>

<rdfs:Class rdf:about="&person;TechnicalStaff">

<rdfs:subClassOf rdf:resource="&person;AdministrativeStaff"/>

</rdfs:Class>

</rdf:RDF>

Figure 5: Fragment of a person ontology in
RDFS.

first describe the transformation of ontology into the
frame representation in flex. Then we describe the
transformation of RDF instances into the instances
in flex.

3.1 Transformation of Ontology
Schema into KSL

Ontology can range from simple taxonomies to frames
with complex value restrictions [9]. In this paper we
focus on the basic frame-based ontology language,
RDFS, as developed in W3C [8] and the further elab-
orated one, DAML+OIL [17].

RDF is a language for describing relation-
ships among resources. RDFS is an extension
of RDF that is used to describe the vocabular-
ies used in RDF documents. It defines several
types of resources: rdfs:Resource, rdfs:Class,
rdfs:Literal, rdfs:Datatype, rdf:XMLLiteral,
and rdf:Property. On the other hand, it defines a
number of relationships: rdfs:range, rdf:domain,
rdf:type, rdfs:subClassOf, rdfs:subPropertyOf,
rdfs:label, and rdfs:comment. The classes and re-
lationships among them in an ontology are defined us-
ing the above definitions and RDF terms. For exam-
ple, a person ontology used in the semantic web por-
tal, KA2 [26], is shown in Figure 5. Note that the en-
tity reference, &person;, is the shorthand of the URI
used to qualify the values in the ontology. The trans-

forming RDFS ontology into flex is that each class
along with its parent class information (subClassOf)
is represented as a frame of flex. For example, the
ontology in Figure 5 is represented as the following
frames in flex.

frame ’AcademicStaff’ is a ’Employee’.

frame ’AdministrativeStaff’ is a ’Employee’.

frame ’Employee’ is a ’Resource’.

frame ’Lecturer’ is a ’AcademicStaff’.

frame ’Researcher’ is a ’AcademicStaff’.

frame ’Secretary’ is a ’AdministrativeStaff’.

frame ’TechnicalStaff’ is a’AdministrativeStaff’.

The properties of each class are then attached to
the corresponding frame definition. For example, the
Employee class in Figure 5 has the following frame
definition.

frame ’AcademicStaff’ is a ’Employee’
default affiliation is a ’Organization’ and
default worksAtProject is a ’Project’ and
default headOf is a ’Project’ and
default headOfGroup is a ’ResearchGroup’.

DAML+OIL is an extension to RDFS with ad-
ditional expressiveness. In addition to definitions
of classes and relationships, a DAML+OIL ontology
also has constraints on classes and relationships. For
example, the Female class shown below has Animal
as its parent class and has a constraint on its mem-
bers that excludes instances of male.

<daml:Class rdf:ID="Female">
<rdfs:subClassOf rdf:resource="#Animal"/>
<daml:disjointWith rdf:resource="#Male"/>

</daml:Class>

For ontology of this kind, we model the classes and
relationships using the frame semantics in flex. Fur-
thermore we use attached procedures to model the
constraint part of classes and relationship. For exam-
ple, we use the following attached procedure to ensure
the consistency of newly created instances of Female.
Other types of attached procedures are used to guard
the access or updating of slot values of classes and re-
lationships.

launch sexCheckOfFemale
when Female is a new instance of ’Female’

then check that Female is not a ’Male’ and
write(’A new female: ’) and
write(Female) and nl.

3.2 Transformation of Instances into
KSL

Instances based on ontology schema may be created
by using edting tools such as Protege-2000 [31]. In-
stances based on standard metadata format such as
DC [19] may be imported from other sites. Or they
may be wrapped from structured data sources such
as relational database. Same instances can be rep-
resented in multiple RDF formats. For example, the
fact that Asia is a continent is represented in two
different syntactic forms [16].

<continent rdf:ID="Asia"/>

<rdf:Description rdf:ID="Asia">
<rdf:type>
<rdfs:Class rdf:about="#continent"/>

</rdf:type>
</rdf:Description>

Though in different syntactic forms, they are all
converted into instance form in flex. For example,
the following RDF instance about the information of
a lecture is converted into an instance in KSL.

<ka2new:Lecturer
rdf:about="&ka2new;ka2new_00025"
ka2new:address="ttu 602"
ka2new:email="hhchen@cse.ttu.edu.tw"
ka2new:firstname="hh"
ka2new:lastname="chen"
ka2new:name="hhchen"
ka2new:phone="3295"
rdfs:label="ka2new_00025"/>

instance ka2new_00025 is a ’Lecturer’
label is ’ka2new_00025’ and
phone is ’3295’ and
name is ’hhchen’ and
lastname is ’chen’ and
firstname is ’hh’ and
email is ’hhchen@cse.

4 Implementation

In this section we describe an implementation of the
system shown in Figure 2. We describe the automatic
transformation of RDF documents into flex instances
using the DCG formalism in Prolog and the reposi-
tory. Then we describe the structure of repository
for the storage of the resulting instances. Finally we
show the discovery service programs.

4.1 Transformation of RDF into flex
Instances Using DCG

The transformation of ontology schema and instances
into frame representation is an essential, as described
in Section 3, to make the RDF-based knowledge
source workable in the frame-based system. An on-
tology may be written using different languages, such
as DRFS and DAML+OIL, that increases the com-
plexity to deal with the features in respective lan-
guages. Furthermore, this kind of transformation is
not a repeated task. Thus in this paper we trans-
form ontology into the frame representation in flex by
hand. The other kind of transformation, from RDF
instances to flex instances, is performed repeatedly
once new RDF instances are imported from other
sites. Thus we develop a translator to make the pro-
cess automatic.

The translator consists of two parts: analysis and
generation. The analysis takes an RDF instance as
input and constructs its structure. The generation
part produces the corresponding form in flex. We
use the DCG (definite clause grammar) in Prolog to
implement the translator [7]. The DCG implements
context-free grammars. A grammar stated in DCG is
executed directly by the Prolog inference engine, that
makes it a syntax analyzer. Semantic interpretation
routines can be interleaved within the right-hand side
of DCG rules to handle the generation tasks.

An input RDF document is segmented into lexical
entries before it is input to the parser. The parser
is constructed by representing straightforwardly the
formal grammar described in the RDF specifica-
tion [21] as DCG rules. For example, the rule of
Description element in the formal grammar of RDF

and the corresponding DCG representation are shown
as below.

description::=’<rdf:Description’
idAboutAttr? bagIdAttr? propAttr* ’/>’
| ’<rdf:Description’ idAboutAttr?

bagIdAttr? propAttr* ’>’
propertyElt* ’</rdf:Description>’

| typedNode

description(_) -->
halfSTG(’Description’,NS),
(idAboutAttr(IdAboutAttr);[]),
(bagIdAttr(BagIdAttr);[]),
propAttrStar(IdAboutAttr),
([’/>’]
;
[’>’],
propertyEltStar(IdAboutAttr),
fullETG(’Description’,NS))
;
typedNode.

The generation part consists of semantic actions
inserted as appropriately in the right-hand side of
DCG rules. The semantic actions are used to in-
terpret the syntactic structures found in the right-
hand side of a DCG rule during the course of pars-
ing the input. For example, a semantic action,
getAllTriples(Obj), is inserted in the following
DCG rule at the point where a container or a de-
scription is found.

obj(Obj) -->
container(Obj)

;
description(_),{getAllTriples(Obj)}.

The resulting flex instances are stored in a repos-
itory according to the classes they belong to. The
repository is a directory structure that is built on the
basis of the class hierarchy found in ontologies. The
root of the directory corresponds to the root class
in the ontology, for example. A directory from the

root directory is created for each class in the on-
tology. Each directory in the repository contains a
file that is used to store the transformed instances of
that class. Thus when an RDF instance is success-
fully transformed into its flex counterpart, the result
is appended to the file in the corresponding directory.

4.2 Discovery Service Programs

At present, we have implemented two discovery ser-
vice programs for used to access the content stored
in the repository: conceptual search and seman-
tic navigation. The conceptual search program ac-
cepts the form, class[A1 : V1, A2 : V2, · · ·], as the
terms of search, where class is the name of class
to be searched, and Ai : Vi’s are the attribute-
value pairs used to constrain the space of the class.
The above form can be used in a flexible way:
only the class name is required, and others are op-
tional. User can specify class name with certain at-
tributes, or more specifically, by adding values of
the attributes. A browser-based GUI for the con-
ceptual search service can be found at the URL,
http://swportal.cse.ttu.edu.tw/concept.htm.

In addition to the conceptual search, we also pro-
vide a navigation interface to give user a whole view
of the content of the repository according to the con-
cept hierarchy of ontology. User can use the naviga-
tion interface in an way similar to directory expansion
to obtain the target concepts she is interested in. The
URL of semantic navigation service is:

5 Conclusions

In this paper we build a semantic web portal using a
frame-based system. The system consists of a knowl-
edge repository, service programs and an inference
engine. The knowledge repository, a directory-based
structure, stores the instances of knowledge trans-
formed from RDF instances. The service programs,
currently conceptual search and semantic navigation,
are written using the reasoning formalisms of the in-
ference engine. We have tested the functions of the
portal by using some ontologies obtained from the

KA2 project[26]. Also we have created a metadata
class under the root class of our ontology to popu-
late popular metadata formats, such as DC[19] and
RSS[10], used in digital libraries. At the moment,
the service programs work well. However, we need
to gather more data from other digital library sites
to see how it performs when the knowledge reposi-
tory scales up. Currently we do not deal with the
namespaces found in RDF document. We will ex-
tend the naming convention in current system to fit
the namespaces. We are developing other service pro-
grams of the portal such as personalization and social
interaction.

References

[1] National Digital Archives Program,
http://www.ndap.org.tw/.

[2] Open Directory Project. http://dmoz.org/.

[3] SW Annotation and Authoring.
http://annotation.semanticweb.org/.

[4] Anupriya Ankolenkar, et al. DAML-S: web service
description for the Semantic Web. In The Semantic
Web - ISWC 2002. Springer. 2002.

[5] R. Benjamins, D. Fensel, S. Decker, and Gomez-
Perez. KA2: building ontologies for the Internet: a
mid term report. International Journal of Human
Computer Studies. pp. 687-712. 1999.

[6] D. Box et al. Simple Object Access Protocol
(SOAP) 1.1, W3C Note 08 May 2000. W3C.

[7] I. Bratko. Prolog Programming for Artificial In-
telligence, 3rd ed.. Addison-Wesley. 2001.

[8] D. Brickley and R.V. Guha. RDF Vocabulary De-
scription Language 1.0: RDF Schema. W3C Work-
ing Draft 12 November 2002. W3C.

[9] D. L. McGuinness. Ontologies come of age. In Di-
eter Fensel, Jim Hendler, Henry Lieberman, and
Wolfgang Wahlster, editors. Spinning the Seman-
tic Web: Bringing the World Wide Web to Its Full
Potential. MIT Press, 2002.

[10] RDF Site Summary (RSS) 1.0.
http://web.resource.org/rss/1.0/.

[11] R. Scott Cost et al. ITtalks: a case study in the
Semantic Web and DAML+OIL. IEEE Intelligent
Systems Special Issue. 2002.

[12] S.Staab et al. AI for the web - ontology-based
community web portals. Proceedings of the Sev-
enteenth National Conference on Artificial Intel-
ligence and Twelfth Conference on on Innova-
tive Applications of Artificial Intelligence, Austin,
Texas, USA. 2000.

[13] S.Staab et al. Semantic community web portals.
WWW9. Amsterdam. 2000.

[14] D. Fulker and G. Janee. Components of an
NSDL architecture: technical scope and functional
model. JCDL ’02. ACM. 2002.

[15] A. Gupta, B. Ludascher and R. W. Moore.
Ontology services for curriculum development in
NSDL. JCDL ’02. ACM. 2002.

[16] F. van Harmelen, P. F. Patel-Schneider and
I. Horrocks (eds.). Reference description of the
DAML+OIL (March 2001) ontology markup lan-
guage. http://www.daml.org/2001/03/reference.

[17] I. Horrocks, F. van Harmelen and P. Patel-
Schneider. DAML+OIL. DAML Program. 2001.

[18] Amzi! inc. Building Expert Systems in Prolog.
Springer-Verlag. 1989.

[19] S. Kokkelink and R. Schwanzl. Express-
ing Qualified Dublin Core in RDF / XML.
Dublin Core Metadata Initiative. 2002.
http://dublincore.org/documents/dcq-rdf-xml/.

[20] O. Lassila and D. L. McGuinness. The role of
frame-based representation on the Semantic Web.
KSL Techical Report, KSL-01-02. Stanford Uni-
versity. 2002.

[21] O. Lassila and R. R. Swick. Resource Descrip-
tion Framework (RDF) Model and Syntax Specifi-
cation. W3C Recommendation 22 February 1999.

[22] K. R. McKeown. Text Generation. Cambridge
University Press. 1985.

[23] N. F. Noy and D. L. McGuinness. Ontology de-
velopment 101: a guide to creating your first on-
tology. Stanford Knowledge Systems Laboratory
Technical Report KSL-01-05 and Stanford Medi-
cal Informatics Technical Report SMI-2001-0880.
2001.

[24] A. Powell and L. Lyon. The DNER techni-
cal architecture: scoping the information environ-
ment. 2001. http://www.ukoln.ac.uk/distributed-
systems/jisc-ie/arch/dner-arch.html.

[25] R. Studer, V. R. Benjamins and D. Fensel.
Knowledge engineering: principles and methods.
Data Knowledge Engineering. 1998.

[26] Y. Sure. KA2 - Knowledge Ac-
quisition Community Ontology.
http://ontobroker.semanticweb.org/ontos/ka2.html.

[27] P. Vasey. flex Expery System Toolkit, version
1.2. Logic Programming Associates Ltd. London,
England. 1989.

[28] C. L. Yeh and C. G. Chen. Design and imple-
mentation of an ontology-based web portal. Pro-
ceedings of the First Workshop of Digital Archive
Technology. Taipei, Taiwan. 2002.

[29] C. L. Yeh and R. F. Lin. Design and implementa-
tion of an RDF triple store. Proceedings of the First
Workshop of Digital Archive Technology. Taipei,
Taiwan. 2002.

[30] C. L. Yeh. Development of an Ontology-
Based Portal for Digital Archive Services. Pro-
ceedings of the International Conference on Digi-
tal Archive Technologies (ICDAT2002), Academia
Sinica, Nankang, Taipei, Taiwan. 2002.

[31] The Protege Project.
http://protege.stanford.edu/.

[32] Carl Lagoze, et al. The open archives initiative
protocol for metadata harvesting. OAI. Jun. 2002.

